Analyzing and mining multimedia collections

How (can) statistics help?

Guillaume Gravier

Multimedia data: what and what for?

Multimedia data = all kind of digital data related to media, i.e., intended for communication of a(n informative) message towards human

A wide variety of sources

 \rightarrow TV, radio, newspapers, web media; photo agencies; video/photo sharing sites; social media; etc.

A wide variety of material

 \rightarrow texts, posts and tweets; audio, speech and music; images; videos; etc.

A wide variety of application domains

 \rightarrow media asset management; Internet portals; connected TV; on-line courses; etc.

Analyzing and mining multimedia collections 2

Multimedia data are...

1. semantic

- $\rightarrow\,$ created by humans for humans
- $\rightarrow \,$ make sense only in context
- ightarrow variability, heterogeneity and multimodality

 \Rightarrow robust and versatile machine interpretation

2. very very large scale

- ightarrow 100 h of videos / min on YouTube!
- ightarrow 58 billion tweets / day

 \Rightarrow efficient processing and data organization

3. unstructured and disconnected

- ightarrow implicit structure not known \Rightarrow limited interpretation capabilities
- $\rightarrow\,$ lack of organization and links within collections

 \Rightarrow collection structuring methodology

Multimedia content processing: the big data era

From content description...

- $^{\circ}\;$ all-purpose descriptors for texts, images, sounds and videos
 - \rightarrow lemma/stem, MFCC, SIFT, VLAD, Fisher vector, . . .
- $^{\rm o}$ supervised machine learning to detect (semantic) concepts $\rightarrow\,$ SVM, HMM, CRF, MKL, DNN, \ldots
- information retrieval to search and rank documents at scale

... to analytics

Data analytics can be defined as the application of [] data processing techniques to discover patterns, extract knowledge and gain insights from large-scale, typically multi-source data collections that may contain structured, unstructured and semi-structured data. — excerpt from BDVA Strategic Research and Innovation Agenda

Current limits and challenges

- semantic interpretation still far from perfect
 - \rightarrow multimodality, structured I/O, confidence, annotation, etc.
- multimedia pattern mining at scale is lacking
 - ightarrow object discovery, audio pattern discovery, etc.
- multimedia data collections are unstructured
 - \rightarrow multimedia data warehouses, graph structures, etc.
- usage and expectations are still unclear
 - ightarrow practical use of technology, acceptability, evaluation, etc.
- privacy and security are challenged by analytics and data agregation

Texmix: description (and browsing)

extension within industrial FUI project

LIMAH: (description and) browsing

Probabilistic models are (almost) everywhere

- Image indexing and description
 - → Fisher vector, image/tag co-occurrence analysis, PCA, CCA, FCA, etc.
- Speech recognition
 - \rightarrow hidden Markov acoustic models, n-gram language models
- Keyword extraction, named entity recognition
 - \rightarrow term frequency analysis, conditional random fields
- Topic segmentation
 - \rightarrow mutual information (IM³), language model, burst detection, etc.
- Content matching
 - \rightarrow term frequency, latent Dirichlet allocation, cross correlation analysis, etc.
- Collection organization, navigation
 - \rightarrow data visualization, graph analysis, etc.

Deep learning now replacing good old probabilistic models

ightarrow Is deep learning statistics? If not, can both be combined?

Example: images and factorial correspondance analysis

[Nguyen-Khang Pham et al.. Intensive use of factorial correspondence analysis for large scale content-based image

retrieval. Advances in Knowledge Discovery and Management, 2010]

Another example: HMM for video structuring

- \circ four generic scenes
- \rightarrow missed serve + rallye, rallye, replay, other
- prior knowledge
- ightarrow editing rules, tennis rules
- posterior knowledge
- \rightarrow images & soundtrack

[Ewa Kijak et al.. Audiovisual integration for tennis broadcast structuring. Multimedia Tools and Applications, 2006]

What in media hyperlinking?

The Mediaeval/TRECVid hyperlinking task scenario:

- 1. anchor detection: finding potential anchors in the videos
- 2. fragment linking: creating a ranked list of segments related to the anchors

[M. Eskevich et al. Multimedia information seeking through search and hyperlinking. ICMR, 2013]

anchoring + hyperlinking = organizing a collection for analytics

A two step language-based hyperlinking framework

Topic segmentation based on transcripts

- ASR-adapted linear topic segmentation
 [Guinaudeau *et al.*, Mediaeval 12; Şimon *et al.*, EMNLP 13]
- hierarchical topic segmentation
 [Guinaudeau *et al.*, Mediaeval 13; Şimon *et al.*, SLAM 13]
- fragmentation

[[]Şimon et al., RANLP 15]

Standard language-based ranking

		reference		ASR			
system	lin+bow	lin+ngram	hie+bow	lin+bow	lin+ngram	hie+bow	
P	0.31	0.42	0.26	0.20	0.33	0.19	
P_{tol}	0.25	0.41	0.26	0.14	0.30	0.17	

Mediaeval 2013 [Şimon et al., SLAM 14]

∮ §IRISA

Graph-based topic segmentation

vertex values = lexical cohesion = generalized probability

$$\hat{s} = \operatorname*{argmax}_{s_1^m} \sum_{i=1}^m \ln(P[w_{a_i}^{b_i}|S_i]) - \alpha \ln(n)$$
$$\Delta_i = \left\{ P_i(u) = \frac{C_i(u) + 1}{z_i}, \forall u \in V_K \right\} \qquad \ln P[S_i; \Delta_i] = \sum_{j=1}^{n_i} \ln P[w_j^i; \Delta_i]$$

∮ §IRISA

Graph-based topic segmentation (cont'd)

Improving language modeling

- ° using confidence measures
- adding semantic relations to cohesion

$$C_i''(u) = C_i(u) + \sum_{j=1, w_j^i \neq u}^{n_i} r(w_j^i, u)$$

◦ using interpolated language models

$$\ln P[S_i; S_i, T] = \sum_{j=1}^{n_i} \ln(\lambda P[w_j^i; \Delta_i] + (1-\lambda)P[w_j^i; \Delta_t])$$

Remove independence assumption

$$P[W|S_1^m] = P[W|S_1] \prod_{i=2}^m P[W|S_i, S_{i-1}]$$

where $\ln P[W|S_i, S_{i-1}] = \ln P[W_i|S_i] - \lambda \Delta(W_i, W_{i-1})$

∮ § IRISA

14

From segmentation to fragmentation

From burst analysis ...

... to topic fragments

Topic models for content matching

Principle: Explain documents in a collection as a mixture of K topics, where each word is assigned to a topic.

I eat fish and vegetables. Fishes are pets. My kitten eats fish. [source: wikipedia]

Hierarchy with 10 levels, trained independently on BBC collection transcripts

- $^{\circ}$ level 1, $K_1=50$, broad topics z_i^1 $(i\in [1,K_1])$
- $^{\circ}$ level 10, $K_{10}=1,700$, fine-grain topics z_i^{10}

year	number of topics (K)						
	direct	50	150	300	700		
2013	0.25	0.44	0.34	0.35	0.34		
2014	0.19	0.18	0.25	0.26	0.21		

Target reranking task, using targets from all MediaEval participants: relevance after 15 s of the top-10 targets [Simon *et al.*, SLAM 15]

[combination into hierarchical stuff goes here]

Multimodality to improve diversity

Bimodal extension of LDA mapping words and visual concepts via topic-specific distributions

[Bois et al., TRECVid 15]

Crossmodal matching with symmetrical bi-directionnal auto-encoders

[Vukotić et al., ICMR 16]

Multimodality to improve diversity (cont'd)

Measuring diversity of the top-5 relevant targets found by each approach

	transcripts			concepts		
	n_u	\overline{d}_a	\overline{d}_i	n_u	\overline{d}_a	\overline{d}_i
baseline	29.8	0.51	0.61	35.6	0.61	0.71
BiDNN	40.8	0.20	0.12	46.7	0.42	0.31
BiLDA	40.0	0.25	0.16	38.0	0.48	0.41

Intrinstic measures of diversity

Perceived diversity (25 subjects)

[Bois et al., submitted to MMM 17]

Legend:

 n_u = number of unique key words/concepts in top-5 targets

 \overline{d}_i = average similarity among the top-5 targets

 \overline{d}_a = average similarity between anchor and top-5 targets

∮ § IRISA

Acknowledgements

Many thanks to all who contributed to the results presented here (in alphabetical order): Laurent Amsaleg, Rémi Bois, Morgan Bréhinier, Sébastien Campion, Vincent Claveau, Camille Guinaudeau, Ewa Kijak, Sien Moens, Pascale Sébillot, Ronan Sicre, Anca-Roxana Şimon, Arnaud Touboulic, and Vedran Vukotić.

And very likely others that I might have forgotten.

Work presented here benefited from the financial support of: BPI France (Quaero), CominLabs & ANR (LIMAH), EIT ICT Labs (OpenSEM) and Région Bretagne (ARED).

