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What is functional brain imaging?
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What is functional brain imaging?

7

sp
at

ia
l r

es
ol

ut
io

n 
(m

m
) 

invasivity 

weak strong 

5 

10 

15 

20 

temporal resolution (ms) 
1 10 102 103 104 105 

sEEG 

MEG 

EEG 

fMRI 

MRI(a,d) 

PET 

SPECT 

nIRS 

Fast Slow

Fine

Coarse
Today's topic



A. Gramfort                        Machine learning with neuroscience time series  

Neurons as current generators
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surface
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Electro- & Magneto-encephalography
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Time frame: 10 seconds

cardiac

drift

eye blink

Buzz = 
Line 
noise
60Hz

M/EEG Measurements

10

Sample MEG measurements

≈ 1000 samples / s

EEG : 
• ≈ 32 to 100 sensors 
MEG : 
• ≈ 150 to 300 sensors
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Functional MRI (fMRI)
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courtesy of Gael Varoquauxhttp://www.youtube.com/watch?v=uhCF-zlk0jY

≈ 1 image / 2s

http://www.youtube.com/watch?v=uhCF-zlk0jY


Imaging the brain at a millisecond time 
scale with MEG and EEG

and stats and optimization

Find the current 
generators that 

produced the MEG 
measurements
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Boundary element method (BEM),
i.e., numerical solver with 

approximate solution.

What do we measure?

14

[Geselowitz 67, De Munck 92, Kybic et al. 2005, Gramfort et al. 2010 ]

What is MEG? From Maxwell to the gain matrix
Retinotopy with MEG

Origin of the MEG signal
Forward Problem
Inverse Problem

Maxwell Equations

with quasi-static
approximation :

�
⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⇥

⇤⇥ ⌅E = 0

⇤ · ⌅B = 0

⇤⇥ ⌅B = µ0
⌅J

⇤ · ⌅E =
⇥

�0

with ⌅J : all currents

⇤ : tissue conductivities
V : electric potential

Conduction currents ( Extracellular )

⌅J can be decomposed : ⌅J = ⌅Jp + ⌅Jc
⌅Jp : source currents (ie. primary currents)
⌅Jc : conduction currents

⌅Jc = �⇤⇤V

Alexandre Gramfort 7 / 30
Linear PDE -> Linear forward problem / Fixed design
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X 
sources
amplitudes

The source model

15

Position 5000 candidate
sources over each 

hemisphere
(e.g. every 5mm)

Time

Sp
ac

e

Scalar field defined over time [Dale and Sereno 93]
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The source model

16

G =

one column = Forward 
field of one dipole

G is the gain matrix / 
forward operator

obtained by concatenation 
of the forward fields
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102 CHAPTER 3. THE INVERSE PROBLEM WITH DISTRIBUTED SOURCE MODELS

inverse matrices cannot be explicitly computed. We need for each pair (�, µ) to run an itera-
tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING BASED METHODS

In previous sections, the ⇥2 priors used in the penalization of the inverse problem are de-
fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed
methods assume a predefined covariance matrix for the sources. In the following paragraphs,
we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)
X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M�GX⇤�E + ⇤X⇤�X , (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.
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M = GX+E :  An ill-posed problem

17

Small “n” large “p” problem

p ≈ 10000 n ≈
 100 
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y = Xβ+E :  An ill-posed problem

18

At each time instant the M/EEG inverse problem IS a 
regression with more variables than observations

Standard
statistics notations

design matrix

regression 
coefficientsp ≈ 10000 n ≈

 100 
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Variational formulation

19

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, entropy . . .

⌅1

⌅2

⌅w,1

⌅w,2

⇥
Data fit

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, entropy . . .

⌅1

⌅2

⌅w,1

⌅w,2

:  Trade-off between the data fit and the regularization
Regularization

1

X� = arg min
X

⇤M�GX⇤F , subject to ⇤(X) ⇥ �

X� = arg min
X

⇤M�GX⇤2F + ⇥⇤(X), ⇥ > 0

⇤(X)

⌅1, ⌅2, entropy . . .

⇤A⇤F = tr(AT A)

⌅1

⌅2

⌅w,1

⌅w,2

⇥

where
2

Remark: Assumes Gaussian i.i.d. homoscedastic noise…
In practice heteroscedastic, autocorrelated, :(

[Engemann & Gramfort NI 2015]
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L2 a.k.a. Minimum Norm Estimates (MNE)

20
http://youtu.be/Uxr5Pz7JPrs

Result obtained with L2 regularization: �(X) = kXk2F

http://youtu.be/Uxr5Pz7JPrs
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Linear inverse -> 
•Imperfect deconvolution 
•spatial leakage 
•smeared activations 
•no temporal smoothing 
•but really fast…

L2 Solution

�(X) = kXk2F



S1 S2c

S2i
PPC?

non-linear inverse -> 
•Clear sequential 
activations

but harder / slower ….

�(X) sparse / non-smooth



Source localization under 
sparsity assumptions
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Let’s start with the Lasso

24

Objective of this work: speed-up Lasso solvers

ˆ—p⁄q
P arg min

—PRp

ˆ

1

2

}y ´ X—}

2

2

loooooomoooooon

data fitting term

` ⁄}—}

1

loomoon

sparsity-inducing penalty

˙

§ Compute ˆ—p⁄q for many ⁄’s: e.g., T values from
⁄

max

:“ }X

J
y}8 to ‘⁄

max

on log-scale (T “ 100, ‘ “ 0.001)
§ Flexible: provide a way that can beneficiate to most solvers

(though mainly focused on Coordinate Descent)
§ Easy to code

Objective of this work: speed-up Lasso solvers

ˆ—p⁄q
P arg min

—PRp

ˆ

1

2

}y ´ X—}

2

2

loooooomoooooon

data fitting term

` ⁄}—}

1

loomoon

sparsity-inducing penalty

˙

§ Compute ˆ—p⁄q for many ⁄’s: e.g., T values from
⁄

max

:“ }X

J
y}8 to ‘⁄

max

on log-scale (T “ 100, ‘ “ 0.001)
§ Flexible: provide a way that can beneficiate to most solvers

(though mainly focused on Coordinate Descent)
§ Easy to code

Warning: with the stats notations !
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Denoising case

25

The denoising case
Suppose the design is simple: n “ p and X “ Id

n

, meaning the
atoms are canonical elements: xj “ p0, ¨ ¨ ¨ , 0, 1

Ò
j

, 0, ¨ ¨ ¨ , 1q

J

ˆ—p⁄q
P arg min

—PRp

ˆ

1

2

}y ´ —}

2

` ⁄}—}

1

˙

ˆ—p⁄q
“ arg min

—PRp

ˆ

1

2

}y ´ —}

2

` ⁄}—}

1

˙

(strictly convex)

ˆ—p⁄q
j “ arg min

—
j

PR

ˆ

1

2

pyi ´ —jq
2

` ⁄|—j |

˙

, @j P rns (separable)

This reduces to a 1D problem.
Rem: The solution is called the proximal operator of ⁄} ¨ }

1
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Soft Thresholding

26

Soft-Thresholding
The 1D problem has a closed form solution: Soft-Thresholding:

STp⁄, yq “ arg min

—PR

ˆ

1

2

py ´ —q

2

` ⁄|—|

˙

“ signpyq ¨ p|y| ´ ⁄q`

with the notation p¨q` “ maxp0, ¨q

Proof: easy with sub-gradients and Fermat condition
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Soft Thresholding

27

The Lasso: algorithmic point of view

Possible algorithms for solving this convex program:
§ Homotopy method / LARS : very e�cient for small p Osborne

et al. (2000), Efron et al. (2004) and full path
§ Forward - Backward / proximal algorithm: useful in

signal/image for case where r Ñ x

J
j r is cheap to compute

(e.g., with FFT, Fast Wavelet Transform, etc.) Beck and
Teboulle (2009)

§ Coordinate Descent: very useful for large p and potentially
sparse matrix X (e.g., from text encoding) Friedman et
al. (2007) Also better for badly 

conditioned problems



Dual problem
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Dual problem

Primal function : P⁄p—q “

1

2

}y ´ X—}

2

` ⁄}—}

1

Dual feasible set : �X “

 

◊ P Rn
: |x

J
j ◊| § 1, @j P rps

(

Dual solution : ˆ◊p⁄q
“ arg max

◊P�

X

ÄRn

1

2

ÎyÎ2

´

⁄2

2

....◊ ´

y

⁄

....
2

looooooooooooomooooooooooooon

“D⁄p◊q

Rem: The dual feasible set is a polytope

�X “

p
£

j“1

 

◊ P Rn
: |x

J
j ◊| § 1

(

“

 

◊ P Rn
: }X

J◊}8 § 1

(

Rem: the dual formulation is obtained using an additional variable
z “ py ´ X—q{⁄ and considering the Lagrangian, cf. Kim et
al. (2007)



Geometric interpretation
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Geometric interpretation
The dual optimal solution is the projection of y{⁄ over the dual
feasible set �X “

 

◊ P Rn
: }X

J◊}8 § 1

(

:

ˆ◊p⁄q
“ �

�

X

py{⁄q



Duality gap properties
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Duality Gap properties

§ Primal objective: P⁄, Primal solution: ˆ—p⁄q
P Rp

§ Dual objective: D⁄, Primal solution: ˆ◊p⁄q
P �X Ä Rn ,

Duality gap: for any — P Rp and any ◊ P �X ,

G⁄p—, ◊q “P⁄p—q ´ D⁄p◊q

“

1

2

ÎX— ´ yÎ2

` ⁄ Î—Î
1

´ p

1

2

ÎyÎ2

´

⁄2

2

....◊ ´

y

⁄

....
2

q

Rem: For all — P Rp, ◊ P �X ,

D⁄p◊q § D⁄p

ˆ◊p⁄q
q “ P⁄p

ˆ—p⁄q
q § P⁄p—q (Strong duality)

Consequences:
§

G⁄p—, ◊q • 0

§
G⁄p—, ◊q § ‘ ùñ P⁄p—q ´ P⁄p

ˆ—p⁄q
q § ‘ (stopping criterion!)
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KKT Optimality conditions
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KKT: Karush-Khun-Tucker (KKT) conditions

§ Primal solution : ˆ—p⁄q
P Rp

§ Dual solution : ˆ◊p⁄q
P �X Ä Rn

Primal/Dual link: y “ X

ˆ—p⁄q
` ⁄ˆ◊p⁄q

Necessary and su�cient optimality conditions:

KKT/Fermat: @j P rps, x

J
j ˆ◊p⁄q

P

#

tsignp

ˆ—p⁄q
j qu if ˆ—p⁄q

j ‰ 0,

r´1, 1s if ˆ—p⁄q
j “ 0.

Rem: the KKT implies that @⁄ • ⁄
max

“ }X

J
y}8, 0 P Rp is the

(unique here) primal solution for P⁄



Safe rules - safe regions
El Ghaoui et al. (2012)

Screening thanks to the KKT is possible:

If |x

J
j ˆ◊p⁄q

| † 1 then, ˆ—p⁄q
j “ 0

Beware: ˆ◊p⁄q is unknown, so one need to consider a safe region C
containing ˆ◊p⁄q, i.e., ˆ◊p⁄q

P C, leading to :

safe rule : If sup

◊PC
|x

J
j ◊| † 1 then ˆ—p⁄q

j “ 0 (‹)

The new goal is simple, find a region C:
§ as narrow as possible containing ˆ◊p⁄q

§ such that µC :

#

Rn
fiÑ R`

x Ñ sup◊PC |x

J◊|

is easy to compute

Safe rules [El Ghaoui et al. 2012]
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Safe sphere rules
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Safe sphere rules
Let C “ Bpc, rq be a ball of center c P Rn and radius r ° 0. Then
simple computation provide:

µCpxq “ |x

J
c| ` r}x}

so the safe rule becomes

If |x

J
j c| ` r}xj} † 1 then ˆ—p⁄q

j “ 0 (1)

We say we screen-out the variables xj satisfying (1)

Active set : A

p⁄q
pCq “ tj P rps : µCpxjq • 1u

New objective:
§ find r as small as possible
§ find c as close to ˆ◊p⁄q as possible.



Creating safe sphere
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Creating safe sphere



Gap safe sphere
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GAP Safe sphere
For any — P Rp, ◊ P �X

G⁄p—, ◊q “

1

2

ÎX— ´ yÎ2

` ⁄ Î—Î
1

´

ˆ

1

2

ÎyÎ2

´

⁄2

2

....◊ ´

y

⁄

....
2

˙

Gap Safe ball: Bp◊, r⁄p—, ◊qq, where r⁄p—, ◊q “

a

2G⁄p—, ◊q{⁄2

Rem: If —k Ñ

ˆ—p⁄q and ◊k Ñ

ˆ◊p⁄q then G⁄p—k , ◊kq Ñ 0: a
converging solver leads to converging safe rule!



Gap safe sphere is safe !

36

Dynamic GAP safe sphere



Algorithm 1 Coordinate descent (Lasso)
Input: X , y, ‘, K , f , p⁄tqtPrT´1s

1: Initialization: ⁄
0

“ ⁄
max

, —⁄0
“ 0

2: for t P rT ´ 1s do ô Loop over ⁄’s
3: — – —⁄

t´1
ô previous ‘-solution

4: for k P rK s do
5: if k mod f “ 1 then
6: Construct ◊ P �X
7: if G⁄

t

p—, ◊q § ‘ then ô Stop if duality gap small
8: —⁄

t

– —
9: break

10: end if
11: end if
12: for j P rps do ô Soft-Threshold coordinates
13: —j – ST

`

⁄
t

Îx

j

Î2 , —j ´

x

J
j

pX—´yq
Îx

j

Î2
˘

14: end for
15: end for
16: end for



Algorithm 2 Coordinate descent (Lasso) with GAP Safe screening
Input: X , y, ‘, K , f , p⁄tqtPrT´1s

1: Initialization: ⁄
0

“ ⁄
max

, —⁄0
“ 0

2: for t P rT ´ 1s do ô Loop over ⁄’s
3: — – —⁄

t´1
ô previous ‘-solution

4: for k P rK s do
5: if k mod f “ 1 then
6: Construct ◊ P �X , A

⁄
t

pCq “ tj P rps : µCpxjq • 1u

7: if G⁄
t

p—, ◊q § ‘ then ô Stop if duality gap small
8: —⁄

t

– —
9: break

10: end if
11: end if
12: for j P A

⁄
t

pCq do ô Soft-Threshold coordinates
13: —j – ST

`

⁄
t

Îx

j

Î2 , —j ´

x

J
j

pX—´yq
Îx

j

Î2
˘

14: end for
15: end for
16: end for



Results
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Results
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Time to reach convergence using various screening rules.
Full path with 100 values of λ on logarithmic grid from λmax to λmax/1000

[Fercoq et al., Mind the duality gap: Safer screeing rules for the Lasso, ICML 2015] 



Beyond Lasso with time

Challenge: How do you promote sparse solutions 
with non-stationary sources?
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Change the represensation

42

50 STFT coef.

[“Wavelet shrinkage” Donoho & Johnstone 94]
[“Soft thresholding” Donoho 95]

[Application to evoked EEG, O. Bertrand et al. 94]
[Application to ST EEG, Quiroga et al. 03]

etc.

Original STFT

[Moussallam, Gramfort, Richard, Daudet, Signal Processing Letters 2014 ]
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102 CHAPTER 3. THE INVERSE PROBLEM WITH DISTRIBUTED SOURCE MODELS

inverse matrices cannot be explicitly computed. We need for each pair (�, µ) to run an itera-
tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING BASED METHODS

In previous sections, the ⇥2 priors used in the penalization of the inverse problem are de-
fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed
methods assume a predefined covariance matrix for the sources. In the following paragraphs,
we will present inverse solvers that aim at designing a prior based on the data. The source
covariance matrix, i.e., the weights in the ⇥2 penalization term, is “learned”. We will also say
that the model is learned from the data [193].

For simplicity, we will present the following method in the context of instant-by-instant
inverse computation.

The methods presented in this section use the Bayesian formulation of the inverse prob-
lem. We recall the Bayesian framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.25)

where we assume Gaussian variables:

E ⇥ N (0,�E) (3.26)
X ⇥ N (0,�X) (3.27)

and an additive model:
M = GX + E . (3.28)

If �E and �X are known, X is obtained by maximizing the likelihood which leads to:

X⇥ = arg min
X

⇤M�GX⇤�E + ⇤X⇤�X , (3.29)

which leads to:
X⇥ = �XGT (G�XGT + �E)�1M .

In this framework the prior is an ⇥2 norm and learning the prior means learning �X, i.e., the
source covariance matrix. One may also want to learn the noise covariance matrix �E. Note
that in the WMN framework, learning �X consists in learning the weights.

In the case where �X and �E are not fixed a priori, these parameters define the model
commonly denoted M. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.30)

p(X|M,M) is called the posterior.
p(M|X,M) is called the likelihood.
p(X|M) is called the prior.
p(M|M) is called the model evidence.

Z
TF coefficients
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M 

M = GZΦ + E

43

G
forward operatordata 

Objective:  estimate Z given M

+ E
noise

TF coefficients 

Z Z
TF dictionary

Φ

Fr
eq

ue
nc

y 

[Gramfort et al., Time-Frequency Mixed-Norm Estimates: Sparse M/EEG 
imaging with non-stationary source activations, Neuroimage 2013]
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Time-frequency (TF) regularization

44

data fit

The classical approach [MNE, dSPM, sLORETA]:

regularization
we propose:

Ẑ = arg min
Z

kM�GZ�Hk2
F + ��(Z), then X̂ = Ẑ�H

X̂ = arg min
X

kM�GXk2
F + ��(X), � > 0

•     : is a TF dictionary

•     : coefficients of the TF transform of the sources

�
Z

localization in space, time 
and frequency in one step



Multi-scale dictionary
Ẑ = arg min

Z
kM�GZ�Hk2

F + ��(Z), then X̂ = Ẑ�H

•     : union of n STFT dict. with diff. window lengths

•     : is the combination of coefficients of the diff. TF 
transforms of the sources

�
Z

Short win. Long win.

[Bekhti et al. 2016]

cf. [Kowalski et al. 2008]

cf. [Starck et al. 2005]



What regularization?

�(Z) = �(⇢kZk1 + (1� ⇢)kZk21)
Time

Sp
ac

e `21

Time

Sp
ac

e `2

Time
Sp

ac
e `21 + `1

Time

Sp
ac

e `1

�(X) = kXk21 =
X

i

sX

t

|xi,t|2

Gap safe screening for this model in [Ndiaye Fercoq Gramfort Salmon NIPS 2016 ]
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Results
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rh - time=40.72ms rh - time=80.0ms

lh - time=89.80ms rh - time=140,56ms 0 50 100 150 200

Time (ms)

10

30

50

70

90

So
ur

ce
 a

m
pl

itu
de

 (n
Am

)
9.71                               25.2                              35.7

[Bekhti et al. PRNI 2016]

window size: 64 - 16, time shift: 4 - 2 

S1

Somatosensory - MIND dataset

dSPM

S1

•Clear sequential activations 
•No spatial leakage



Convolutional Networks Map 
the Architecture of the 
Human Visual System

joint work with Bertrand Thirion and Gaël Varoquaux

work of Michael Eickenberg

“Seeing it all: Convolutional network layers map the function of the human visual system”
Michael Eickenberg, Alexandre Gramfort, Gaël Varoquaux, Bertrand Thirion, Neuroimage (to appear)
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Convolutional Nets for Computer Vision

49

[Krizhevski et al, 2012]
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Relating biological and computer vision

[Hubel & Wiesel, 1959] [Sermanet 2013]

50

● V1 functionality comprises edge detection
● Convolutional nets learn edge detectors, color boundary detectors 

and blob detectors

Cat V1 
orientation selectivity

ConvNet Layer 1

Low 
Level



Can we use computer vision 
models and a large fMRI data to 
better understand human vision?
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Learning the fMRI encoding function

52

Image,
sound, task

fMRI volume

Challenge: Predict y given X or learn a function f : X → y

Scanning
encoding function fstim

X

��������
�����������	

�
����
�
�����
�����������
�	
����
�����

	����������������
������������������

 
!�����������

y

[Thirion et al. 06, Kay et al. 08, Naselaris et al. 11, Nishimoto et al. 2011, Huth 2012 
et al., Schoenmakers et al. 13, Güçlü et al. 2015, Cichy, et al. 2016, Huth et al. 2016 ...]
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fMRI paradigm and HRF

53

HRF: Hemodynamic
response function

Stimulation

Model pred. = stimulation ✻ filter (convolution)
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Feature extraction by deconvolution

54

One estimates a filter for each voxel 
using rank constrained optimization

Data-driven HRF estimation for encoding and decoding models, Fabian Pedregosa, Michael 
Eickenberg, Philippe Ciuciu, Bertrand Thirion and Alexandre Gramfort, Neuroimage 2015

Fabian Pedregosa
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Some details on the data

• Some details about the data:

• 30GB of stimuli (15 frames/s in .png for 3h)

• about 4,000 volumes

• about 10GB of raw data

• 30,000 “good” voxels

• > 3h in the scanner

56
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Best Predicting Layers per Voxel

57
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Fingerprints summary statistic

58

Photos Videos
2 public datasets from UC Berkeley



A. Gramfort                        Machine learning with neuroscience time series  

New 
stimuli

Activation 
Maps

Synthesizing Brain activation maps

59

Convolutional net  
forward model

Did we learn a good forward model of 
brain activation as seen with fMRI?
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Faces vs Places: Ground Truth

60

Stimuli from [Kay 2008]
Close-up faces and scenes

Contrast of
stimuli from [Kay 2008]

Close-up faces and scenes



Let’s take a step back…
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What is changing?

62

Volume (Computational issues)

• 7000 fMRI pipelines lead to different neuroscience findings [Carp 2012]

Data variability (Computational issues)

• Standard MEG Study (25 subjects, 10 GB per subject)
• Human Connectome Project (18GB x1000 subjects), USA 

with first MEG data released in March 2015 (100 subjects)

• Human Brain Project, EU
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Conclusion 

63

• The world of neuroimaging is full of challenging stats and 

optimization problems ...

• … look at the data to find the relevant ones

"An approximate answer to the right problem is worth a good deal more 
than an exact answer to an approximate problem. ~ John Tukey"



Data Science

Drew Conway

Statistics
Computer 

Science

Domain Scienceneuro
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The human inverse problem

65

Sparse, Convex 
optimization, STFT, 
proximal operator, 
neural networks,

etc...

Observations brain 
imaging 
people

?

How do you solve 
this ill-posed problem?
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source: https://www.openhub.net/p/scikit-learn

Funding:



http://www.martinos.org/mne

MNE software for processing MEG and EEG data,  A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. 
Strohmeier, C. Brodbeck, L. Parkkonen, M. Hämäläinen, Neuroimage 2013

http://www.martinos.org/mne


http://www.martinos.org/mnehttp://www.martinos.org/mne

Harvard

MNE developer in 2010
MNE developers in 2015

Berkeley

Paris

NYU

Cambridge Aalto

Ilmenau
Juelich

Sheffield

U. Wash.

UCSF

Graz
Marseille

http://www.martinos.org/mne
http://www.martinos.org/mne


Thanks !

GitHub : @agramfort Twitter : @agramfort

Support ANR THALAMEEG ANR-14-NEUC-0002-01
NIH R01 MH106174, DFG HA 2899/21-1.

http://alexandre.gramfort.netContact

Post-docs positions available !

• M. Hämäläinen
• M. Kowalski
• D. Strohmeier
• J. Haueisen
• Y. Bekhti
• M. Jas
• G. Varoquaux
• B. Thirion
• M. Eickenberg
• F. Pedregosa

• J. Salmon
• O. Fercoq
• E. Ndiaye
• … the scikit-learn 
contributors

• … the MNE 
contributors
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