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Integrative Analysis

Wikipedia. Data integration “involves combining data residing in dif-
ferent sources and providing users with a unified view of these data.
This process becomes significant in a variety of situations, which in-
clude both commercial and scientific domains”.

System Biology. Integrative Analysis: Analysis of heterogeneous
types of data from inter-platform technologies.

Goal. Combine multiple types of data:
» Contribute to a better understanding of biological mechanisms.

» Have the potential to improve the diagnosis and treatments of
complex diseases.
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Example: Data definition

X Y

- n observations - n observations
- p variables - q variables

Big Data PLS Methods JSTAR 2016, Rennes 4/54



Example: Data definition

X

- n observations
- p variables

Y

- n observations
- q variables

» “Omics.” 'Y matrix: gene expression, X matrix: SNP (single nu-
cleotide polymorphism). Many others such as proteomic, metabolomic

data.

Big Data PLS Methods

JSTAR 2016, Rennes




Example: Data definition

X Y

- n observations - n observations
- p variables - q variables

» “Omics.” 'Y matrix: gene expression, X matrix: SNP (single nu-
cleotide polymorphism). Many others such as proteomic, metabolomic
data.

» “Neuroimaging”. Y matrix: behavioral variables, X matrix: brain
activity (e.g., EEG, fMRI, NIRS)

Big Data PLS Methods JSTAR 2016, Rennes 4/54



Example: Data definition

p

q

X

- n observations
- p variables

Y

- n observations
- q variables

» “Omics.” 'Y matrix: gene expression, X matrix: SNP (single nu-
cleotide polymorphism). Many others such as proteomic, metabolomic

data.

» “Neuroimaging”. Y matrix: behavioral variables, X matrix: brain

activity (e.g., EEG, fMRI, NIRS)

» “Neuroimaging Genetics.” Y matrix: DTI (Diffusion Tensor Imag-

ing), X matrix: SNP
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Data: Constraints and Aims

» Main constraint: colinearity among the variables, or situation with
p > norq>n. But pand q are supposed to be not too large.
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Data: Constraints and Aims

» Main constraint: colinearity among the variables, or situation with
p > norq>n. But pand q are supposed to be not too large.
» Two Aims:
1. Symmetric situation. Analyze the association between two blocks
of information. Analysis focused on shared information.
2. Asymmetric situation. X matrix= predictors and Y matrix=
response variables. Analysis focused on prediction.

» Partial Least Square Family: dimension reduction approaches
» PLS finds pairs of latent vectors € = Xu, w = Yv with maximal
covariance.

e.g., & =u; X SNPy+ up x SNP; + --- + up x SNP,
» Symmetric situation and Asymmetric situation.
» Matrix decomposition of X and Y into successive latent variables.

Latent variables: are not directly observed but are rather inferred
(through a mathematical model) from other variables that are observed
(directly measured). Capture an underlying phenomenon (e.g., health).
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PLS and sparse PLS

Classical PLS
» Output of PLS: H pairs of latent variables (&, wn), h=1,..., H.

» Reduction method (H << min(p, q)). But no variable selection for
extracting the most relevant (original) variables from each latent

variable.
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PLS and sparse PLS

Classical PLS
» Output of PLS: H pairs of latent variables (&, wn), h=1,..., H.
» Reduction method (H << min(p, q)). But no variable selection for
extracting the most relevant (original) variables from each latent
variable.
sparse PLS
» sparse PLS selects the relevant SNPs

» Some coefficients u, are equal to 0
Ep = U X SNP; + uo xXSNP>+ u3 XSNPs+---+ Up X SNPP
N—— ——
=0 =0
» The sPLS components are linear combinations of the selected
variables
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Group structures within the data

» Natural example: Categorical variables form a group of dummy variables
in a regression setting.

Big Data PLS Methods JSTAR 2016, Rennes 7/54



Group structures within the data

» Natural example: Categorical variables form a group of dummy variables
in a regression setting.

» Genomics: genes within the same pathway have similar functions and
act together in regulating a biological system.
— These genes can add up to have a larger effect
< can be detected as a group (i.e., at a pathway or gene set/module
level).
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Group structures within the data
» Natural example: Categorical variables form a group of dummy variables
in a regression setting.

» Genomics: genes within the same pathway have similar functions and
act together in regulating a biological system.
— These genes can add up to have a larger effect
< can be detected as a group (i.e., at a pathway or gene set/module
level).

We consider that variables are divided into groups:

» Example: p SNPs grouped into K genes (X; = SNP))

X = [SNP1,...,SNPK|SNPk+1,SNPk+2,...,SNP,,|...|SNP,+1,...,SNPP]

geney genez genex

» Example: p genes grouped into K pathways/modules (Xj = gene;))

X = | Xt Xy oo X Xicet Xerzo oo Xa oo 1 X1, Xz X |
| S——
M1 Mz MK
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Group PLS

Aim: select groups of variables taking into account the data structure
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Group PLS

Aim: select groups of variables taking into account the data structure

> PLS components
§h2U1XX1+U2XX2+U3XX3+"'+UPXXP

> sparse PLS components (sPLS)
fh:U1XX1+ Us XX2+ Us XX3+"'+UPXXp
N—— ——

=0 )
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Group PLS

Aim: select groups of variables taking into account the data structure

> PLS components
fh:l.hXX1+U2XX2+U3XX3+"'+UPXXP

> sparse PLS components (sPLS)
fh:U1XX1+ Us XX2+ Us XX3+"'+UPXXp
N—— ——
=0 =0
> group PLS components (gPLS)

moduleq modules modulek

fh = U X1 —+ U Xg + Us X3 + U X1 + Us X5 —+ - Up—1 Xp_1 + Up Xp
—— —— —— —— —— —— ——
=0 =0 #0 #0 #0 =0 =0

— select groups of variables; either all the variables within a group are selected
or none of them are selected
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Group PLS

Aim: select groups of variables taking into account the data structure

> PLS components
gh:l.hXX1+U2XX2+U3XX3+"'+UPXXP

> sparse PLS components (sPLS)
fh:U1XX1+ Us XX2+ Us XX3+"'+UPXXp
N—— ——
=0 =0
> group PLS components (gPLS)

moduleq modules modulek

fh = U X1 —+ U Xg + Us X3 + U X1 + Us X5 —+ - Up—1 Xp_1 + Up Xp
S~—— S~—— S~—— S~ S~—— S—— ~——
=0 =0 +#0 #0 #0 =0 =0

— select groups of variables; either all the variables within a group are selected
or none of them are selected

.. does not achieve sparsity within each group ...
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Sparse Group PLS

Aim: combine both sparsity of groups and within each group.
Example: X matrix = genes. We might be interested in identifying particularly
important genes in pathways of interest.

> sparse PLS components (sPLS)
fh:U1XX1+ Uos XX2+ Us XX3+"'+UpXXp
S—— S~——
=0 =0

> group PLS components (gPLS)

module4 modules modulek

fh = W X1 + U Xz + U3 X3 + U X1 + Us X5 —+ -4 Up—1 Xp,1 + Up Xp
S~ S~ S~—— S~ S~—— N—— ~——
=0 =0 #0 #0 #0 =0 =0
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Sparse Group PLS

Aim: combine both sparsity of groups and within each group.
Example: X matrix = genes. We might be interested in identifying particularly
important genes in pathways of interest.

> sparse PLS components (sPLS)

fh:U1XX1+ Us XX2+ Us XX3+"'+UpXXp
SN——" N——
=0 =0
> group PLS components (gPLS)
module4 modules modulek
fh = u Xi+ U Xo+ Uz Xs+ us X+ uUs Xs+---+ Up—1 Xp,1 + Up Xp
N—— N—— N—— N—— N—— ——

N——
=0 =0 #0 +#0 #0 =0 =0

> sparse group PLS components (sgPLS)
moduleq moduley modulek
gh = U X1 —+ U X2 + U3 X3 + U X4 + Us X5 +-- 4 Up—1 Xp,1 + Up Xp
N—— N—— N—— N—— —— ——

—_——
=0 =0 #0 =0 =0 =0 =0
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Aims in a regression setting

< P > <« q >
.
G1 G2 GK
n Predictor matrix: Outcome matrix: | n

- n observations - n observations
- p variables - g variables
- K groups

i

» Select groups of variables taking into account the data structure;
all the variables within a group are selected otherwise none of
them are selected

» Combine both sparsity of groups and within each group; only rel-
evant variables within a group are selected
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[llustration: Dendritic Cells in Addition to Antiretroviral
Treatment (DALIA) trial

Primary endpoint
Safety

Secondary
endpoint
icity

Immune status
Viral status

Vaccinations
weeks¥ ¥ ¥ ¥
0 4 8 12 16 22 24

HAART plus
DC-HIV LIPO-5 vaccine Follow up
END OF STUDY

Interrupt HAART

» Evaluation of the safety and the immunogenicity of a vaccine on n = 19
HIV-1 infected patients.

» The vaccine was injected on weeks 0, 4, 8 and 12 while patients re-
ceived an antiretroviral therapy. An interruption of the antiretrovirals was
performed at week 24.

» After vaccination, a deep evaluation of the immune response was per-
formed at week 16.

» Repeated measurements of the main immune markers and gene ex-

pression were performed every 4 weeks until the end of the trials.
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DALIA trial: Question ?

First results obtained using group of genes

» Significant change of gene expression among 69 modules over
time before antiretroviral treatment interruption.
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DALIA trial: Question ?

First results obtained using group of genes

» Significant change of gene expression among 69 modules over
time before antiretroviral treatment interruption.

» How does the gene abundance of these 69 modules as measured

at week 16 correlate with immune markers measured at week
167

Primary endpoint

Safety
Secondary
endpoint
icity
Im@une status
W Viral status
weast ¥ ¥ ¥ I
0 4 8 12 16 22 24 48
HAART plus "
DC-HIV LIPO-5 vaccine Follow up
END OF STUDY

Interrupt HAART
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sPLS, gPLS and sgPLS

» Response variables Y= immune markers composed of g = 7 cy-
tokines (IL21, IL2, IL13, IFNg, Luminex score, TH1 score, CD4).
Predictor variables X= expression of p = 5399 genes extracted
from the 69 modules.

Use the structure of the data (modules) for gPLS and sgPLS.
Each gene belongs to one of the 69 modules.

v

v

v

Asymmetric situation.
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Results: Modules and number of genes selected

gPLS sgPLS SPLS

size compl comp2 comp3 compl comp2 comp3 compl comp2  comp3

MLl . 79 0 0 19 0 0 8 2 1
M3.2 126 126 0 0 41 0 0 22 0 0
M35 131 0 0 0 11 24 0 7 7 1
M3.6 42 42 0 0 15 0 0 6 0 0
M4.1 60 0 0 0 6 0 0 4 0 0
M4.13 2 72 0 0 26 0 0 11 0 0
M4.15 41 41 0 0 15 0 0 10 0 1
M4.2 43 43 0 0 14 0 0 7 1 1
M4.6 104 104 0 0 28 0 0 16 2 0
Ms5.1 214 0 0 0 46 0 0 21 2 4
M5.14 54 54 0 0 13 0 0 7 0 2
M5.15 24 24 24 0 20 0 0 18 0 0
Ms.7 119 0 0 0 18 0 40 8 0 2
M6.13 38 38 0 0 10 0 0 7 0 0
M6.6 40 40 0 0 19 0 0 11 0 0
M7.1 150 150 0 0 37 0 0 19 2 2
M7.27 29 29 0 0 8 0 0 3 0 1
M4.7 82 0 0 0 0 20 0 5 7 0
Me6.7 62 0 0 0 0 23 0 3 4 1
Mg.59 13 0 13 0 0 4 0 0 3 0
M52 65 0 0 0 0 0 32 0 1 0
M4.8 53 53 0 0 0 0 0 1 0 0
M7.35 19 19 0 0 0 0 0 1 1 0
M4.11 17 0 0 17 0 0 0 0 0 0

p = 5399 ; 24 modules selected by gPLS or sgPLS on 3 scores
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Results: Modules and number of genes selected
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Results: Venn diagram

s
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Results: Venn diagram

a8 P PLS

120
157 658

193
sgPLS

SPLS

> sgPLS selects slightly more genes than sPLS (respectively 487 and 420 genes selected)

> But sgPLS selects fewer modules than sPLS (respectively 21 and 64 groups of genes
selected)

> Note: all the 21 groups of genes selected by sgPLS were included in those selected by
sPLS.

> sgPLS selects slightly more modules than gPLS (4 more, 14/21 in common).
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Results: Venn diagram

a8 P PLS

120
157 658

6l n
193
sgPLS

SPLS

> sgPLS selects slightly more genes than sPLS (respectively 487 and 420 genes selected)

> But sgPLS selects fewer modules than sPLS (respectively 21 and 64 groups of genes
selected)

> Note: all the 21 groups of genes selected by sgPLS were included in those selected by
sPLS.

> sgPLS selects slightly more modules than gPLS (4 more, 14/21 in common).
> However, gPLS leads to more genes selected than sgPLS (944)

> In this application, the sgPLS approach led to a parsimonious selection of modules and
genes that sound very relevant biologically
Chaussabel’s functional modules: http://www.biir.net/public_wikis/module_annotation/V2_Trial_8_Modules
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Stability of the variable selection (100 bootstrap samples)

ppppppppppppp S9PLS - companent 1

bk

sssssssssssss

“ N

Stability of the variable selection assessed on 100 bootstrap samples
on DALIA-1 trial data, for the gPLS, sgPLS and sPLS procedures re-
spectively. For each procedure, the modules selected on the original

sample are SeparatedBfggata Pﬂgﬂﬁhodshat V%? P?Z(peolt(ennes 17/54




Now some mathematics ...
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PLS family

PLS = Partial Least Squares or Projection to Latent Structures

Four main methods coexist in the literature:
(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD;
(i) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS);

(iiiy PLS in mode B (PLS-W2B) also called Canonical Correlation
Analysis (CCA);

(iv) Partial Least Squares Regression (PLSR, or PLS2).
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PLS family

PLS = Partial Least Squares or Projection to Latent Structures

Four main methods coexist in the literature:
(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD;
(i) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS);

(iiiy PLS in mode B (PLS-W2B) also called Canonical Correlation
Analysis (CCA);

(iv) Partial Least Squares Regression (PLSR, or PLS2).

> (i),(ii) and (iii) are symmetric while (iv) is asymmetric.
» Different objective functions to optimise.

» Good news: all use the singular value decomposition (SVD).
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Singular Value Decomposition (SVD)

Definition 1
Let a matrix M : p X q of rank r:

r
M= (LIA(VT = Z(S/UIV;F, (1

=1

~

» U = (u) : pxpand V = (v)) : g X g are two orthogonal matrices
which contain the normalised left (resp. right) singular vectors

> A = diag(61,...,6r,0,...,0): the ordered singular values 61 > & >
-2 0,>0.

Note: fast and efficient algorithms exist to solve the SVD.
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Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four PLS
methods as:

(u',v*) = argmax Cov(Xp-1u,Yp-1V), h=1,...,H.
llull,=lIvil,=1

Matrices X and Y, are obtained recursively from Xp_1 and Yy_1.

Big Data PLS Methods JSTAR 2016, Rennes 21/54



Connexion between SVD and maximum covariance
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Matrices X and Y, are obtained recursively from Xp_1 and Yy_1.
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Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four PLS
methods as:

(u',v*) = argmax Cov(Xp-1u,Yp-1V), h=1,...,H.

llull,=llvil,=1

Matrices X and Y, are obtained recursively from Xp_1 and Yy_1.

The four methods differ by the deflation process, chosen so that the
above scores or weight vectors satisfy given constraints.

The solution at step h is obtained by computing only the first triplet
(61, uy, vq) of singular elements of the SVD of Mj_y = XZ_1Yh_1:

(U™, v*) = (u, v1)
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Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four PLS
methods as:

(u',v*) = argmax Cov(Xp-1u,Yp-1V), h=1,...,H.
llull,=lIvil,=1

Matrices X and Y, are obtained recursively from Xp_1 and Yy_1.

The four methods differ by the deflation process, chosen so that the
above scores or weight vectors satisfy given constraints.

The solution at step h is obtained by computing only the first triplet
(61, uy, vq) of singular elements of the SVD of Mj_y = XZ_1Yh_1:
(u',v") = (u1,v1)

Why is this useful ?

Big Data PLS Methods JSTAR 2016, Rennes 21/54



SVD properties

Theorem 2

Eckart-Young (1936) states that the (truncated) SVD of a given
matrix M (of rank r) provides the best reconstitution (in a least
squares sense) of M by a matrix with a lower rank K:

2 r

= > &

k
min M~ Al = HM = > Seuev]
=1 F  (=k+1

A of rank

If the minimum is searched for matrices ‘A of rank 1, which are under
~T — ~ .
the form uv' where u, v are non-zero vectors, we obtain

min
uyv

r
MG = 362 = M-
(=2
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SVD properties

Thus, solving )
ar%?in ”Mh_1 - WT“F 2)

and norming the resulting vectors gives us u; and v4. This is an-
other approach to solve the PLS optimization problem.
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Towards sparse PLS

» Shen and Huang (2008) connected (2) (in a PCA context) to least square
minimisation in regression:

2 2
—TII12 ] — |
Mot —T|| = |vee(Mi 1) - (Tp 0 W)|| = [vec(Mn1) - (Vo I)u
F N N———— e N————

y XB 5 y X8l

— Possible to use many existing variable selection techniques using
regularization penalties.
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Towards sparse PLS

» Shen and Huang (2008) connected (2) (in a PCA context) to least square
minimisation in regression:

2 2
—TII12 ] — |
Mot —T|| = |vee(Mi 1) - (Tp 0 W)|| = [vec(Mn1) - (Vo I)u
F N N———— e N————

y XB 5 y X8l

— Possible to use many existing variable selection techniques using
regularization penalties.

We propose iterative alternating algorithms to find normed vectors
u/|[ul] and v/|[v|| that minimise the following penalised sum-of-squares
criterion
—TI2 _
||Mh_1 -uv “F + Pa(u,v),

for various penalization terms P,(u, v).
— We obtain several sparse versions (in terms of the weights u and

v) of the four methods (i)—(iv).
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Sparse PLS models

For cases (i)—(iv),
» Aim: obtaining sparse weight vectors u, and vy,.

» Associated component scores (i.e., latent variables) &, := X,_1uy and
wp = Yp1vy, h=1,... H, for a small number of components.

> Recursive procedure with objective function involving X_4 and Yx_4
— decomposition (approximation) of the original matrices X and Y:

X = EHCI’ + T:X,H’ Y= QHDL + TY,H’ (3)

where = = (£¢,,) and 2 = (wp).

» For the regression mode, we have the multivariate linear regression
model _
Y =XBps+ &,

with Bps = Un(CLUL) ' PyD], and & is a matrix of residuals.
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Example case (ii): PLS-W2A

Definition 3

The objective function at step h is

(Uh, Vh) = argmax COV(Xh_1 u, Yh_1 V)
llull,=lIvil,=1

subject to the constraints:

Cov(§,€;) = Cov(wh, wj) =0, 1<j<h.

In order to satisfy these constraints:
Xh = Pﬁxhq and Yh = P“’EYh’M (Xo = X, Yo - Y)

where &, (resp. Q) is the first left (resp. right) singular vector obtained by
applying a SVD to Mp_q := X! . Ypq, h=1,... H.
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Regression mode (iv): PLSR, PLS2

» Aim of this asymmetric model is prediction.
» PLS2 finds latent variables that model X and simultaneously predict Y.
» Difference with PLS-W2A is the deflation step:

Xh = Pfﬁxhq and Yh = Pgﬁth.
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The algorithm

Main steps of the iterative algorithm

1.

2 e

Xo=X, Yo=Y h=1

My_q = XL1Yh_1.

SVD: extraction of the first pair of singular vectors uy and vy,.
Sparsity step. Produces sparse weights Usparse and Viparse.
Latent variables: &, = Xn_1Usparse aNd wp = Yp_1 Vparee
Slope coefficients:

> cn = X]_,£,/€ €, for both modes
> dp = Y] &,/€} &, for “PLSR regression mode”
> ep =Y, ,wn/w]ws, for “PLS mode A”

Deflation:
> X = Xn_1 — &,¢] for both modes

» Yp = Yy_1 — £,d] for “PLSR regression mode”
» Yo =Yn g — whe; for “PLS mode A”

If h = H stop, else h = h + 1 and goto step 2.

Big Data PLS Methods JSTAR 2016, Rennes
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Introducing sparsity

“Sparsity” implies many zeros in a vector or a matrix.

(Credits: Jun Liu, Shuiwang Ji, and Jieping Ye)
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Introducing sparsity

Let 6 be the model parameters to be estimated. A commonly employed
method for estimating @ is

min [loss(6) + A penalty(6)] .
This is equivalent to the following method:
min loss(0)
subject to the constraints penalty(0) < z (for some z).

Example: loss(6) = 0.5]|0 — v||§ for some fixed vector v.
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Why does L, induce sparsity?

Analysis in 1D (comparison with L)

0.5 (6 - v)?+ 6|

v
Ifv>a 6=v-21 9=1+2/1
fv<-4, 0=v+4 No sparsity here.
Else, 6= 0 (sparsity!)
Nondifferentiable at 0 Differentiable at 0
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Why does L, induce sparsity?

Understanding from the projection

min loss(d)  min 0.5/|6-v|?
st gl <l stlgll <1

1

Sparse

Big Data PLS Methods

min loss(9)  min 0.5]|-v|]?
st.lgll <1 st Bl <1
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Why does L, induce sparsity?

Understanding from constrained optimization

024 min loss(g) 024 min loss(§)
st [l <1 st 1], <1

9*

N

(Bishop, 2006)
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sparse PLS (sPLS)

In sPLS, the optimisation problem to solve is

min [[Mp ~ “hV;”i + Pa,, (Un) + Pay, (V).

up,vp
> My - unViI2 = 20 57 (my - unvi)?,
> M, = X!Y,, for each iteration h.
> Py, (Un) = X2, 247|uil and Py, (va) = 37, 2451
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sparse PLS (sPLS)

In sPLS, the optimisation problem to solve is

min [[Mp ~ “hV;”i + Pa,, (Un) + Pay, (V).

up,vp
> My - unViI2 = 20 57 (my - unvi)?,
> M, = X!Y,, for each iteration h.
> Py, (Un) = X2, 247|uil and Py, (va) = 37, 2451

Ilterative solution. Applying the thresholding function g*°%(x, 1) = sign(x)(|x| — 1),
> to the vector Mv, componentwise to get uy.
> to the vector M uy, componentwise to get vj.
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group PLS (gPLS)

» X and Y can be divided respectively into K and L sub-matrices (groups) X :
nxpxand YO : nx g
> Same idea as Yuan and Lin (2006), we use group lasso penaltieS'

Py —MZ\@HU l, and  Py(v f/lzz Vailv?,

where u®) (resp. v() is the weight vector associated to the k-th (resp. I-th)
block.

In gPLS, the optimisation problem to solve is

i 3 M - w4 )+ Poo),

=1

» MK = xyO",

Remark if the k-th block is composed by only one variable then

e = J(ut)2 = ).
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group PLS (gPLS)

Previous objective function can be written as

K
D M) —uIVTIE 4 2 VBillu®llg) + Pay (v)
k=1

where M*) = X(K)YT_We can optimize (for v fixed) over groupwise
components of u separately. First term above expands as:

trace[M(k")M(k")T] - 2trace[u(K)vTM(k")T] + trace[u(k)u(k)T]
Optimal u®) thus optimizes
trace[u(k)u(k)T] - 2trace[u(k)VTM(k")T] + A4 \/p_k”U(k)HQ.

This objective function is convex, so the optimal solution is character-
ized by subgradient equations (subdifferential equals to 0).
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Subdifferential
Subderivative, subgradient, and subdifferential generalize the deriva-
tive to functions which are not differentiable (e.g., |x| is nondifferen-
tiable at 0). The subdifferential of a function is set-valued.

A
\;/ X;O >

Blue: convex function (nondifferentiable at xg). Slope of each red line
= a subderivative at xo. The set [a, b] of all subderivatives is called the
subdifferential of the function f at xg. If f is convex and its subdifferen-
tial at xp contains exactly one subderivative, then f is differentiable at

XO . Big Data PLS Methods JSTAR 2016, Rennes
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We have

and

Example:

a— lim (X~ f0)

X=Xy X — Xo

b= lim (X =)
X—)x(;r X — Xo

Consider the function f(x) = |x| which is convex. Then,

the subdifferential at the origin is the interval [a,b] = [-1,1]. The
subdifferential at any point xo < 0 is the singleton set {—1}, while the
subdifferential at any point xo > 0 is the singleton set {1}.
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For group k, ut®) must satisfy that the subdifferential is null:

—2u®) o M&y = 24 pro, (4)
where @ is a subgradient of |ju(¥)||, evaluated at u®). So,
_ulo ie (k) .
9 —1 e, it 0;
e(0:16l2 <1} if u®) =o.
We can see that subgradient equations (4) are satisfied with u(¥) = 0
if
IMEv, <272 Vix. (5)
For u(k) % 0, equation (4) gives
B k. uk)
—2u®) L aoMKy = 2 1v—|| T (6)
ul”

Combining equations (5) and (6), we find:
u("):(1 A i) MEy k=1,... K, (7)
2 MBIy )

where (a)4+ = max(a,0).
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In the same vein, optimisation over v for a fixed u is also obtained by
optimising over groupwise components:

v<')_( _ A ‘/i' DTy, 1=1,...,L (8)
2 IMED ),

We thus obtain the following theorem.
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group PLS (gPLS)

Theorem 4
Solution of the group PLS optimisation problem is given by:

u®) = (1 - ﬁﬂ) MEy (for fixed v)
2 Myl ),

and
v — (1 A Na

42 (N
2 A, )+ M u (for fixed u).

Note: we will iterate until convergence of uk) and v(, using alterna-
tively one of the above formulas.
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sparse group PLS: sparsity within groups

> Following Simon et al. (2013), we introduce sparse group lasso penalties:

K

Py(u) = (T=a)t ) Voellu®ll, + as il
k=1
L

Pu(v) = (1-a2)d ), Vallv@l, + asdalvil,.

I=1
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sparse group PLS (sgPLS)

ulk) = 0if

otherwise

)

We have v(!) = 0 if

and

otherwise.

Theorem 5

Solution of the sparse group PLS optimisation problem is given by:

oo (MEv 2y 2), < 441 = ) Vi

1

2

soft M(k) Wl 2
gt MKy, d101/2) - 21 (1 - @) VPO =l el ]

g*ort (M("I)T u, /12012/2)”2 < (1 -e2) Var

:
; )

. T
3 gsoﬂ(M(u’) u,/l1a1/2)—/12(1—‘12)‘/a

gt (M(-J u, dpas /2) }

1o (MCT u, 2302/2)1,

“ gt (MEIv, dyar/2)1l, |

Similar proof (see our paper in Bioinformatics, 2016).
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R package: sgPLS

» sgPLS package implements sPLS, gPLS and sgPLS methods:
http://cran.r-project.org/web/packages/sgPLS/index.html

» Includes some functions for choosing the tuning parameters related to
the predictor matrix for different sparse PLS model (regression mode).

» Some simple code to perform a sgPLS:

model.sgPLS <- sgPLS(X, Y, ncomp = 2, mode = "regression",
keepX = c(4, 4), keepY = c(4, 4),
ind.block.x = ind.block.x ,
ind.block.y = ind.block.y,
alpha.x = ¢(0.5, 0.5),
alpha.y = c¢(0.5, 0.5))

» Last version also includes sparse group Discriminant Analysis.
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Regularized PLS scalable for BIG-DATA

What happens in a MASSIVE DATA SET context?
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Regularized PLS scalable for BIG-DATA

What happens in a MASSIVE DATA SET context?

Massive datasets. The size of the data is large and analysing it takes
a significant amount of time and computer memory.

Emerson & Kane (2012). Dataset considered large if it exceeds 20% of

the RAM (Random Access Memory) on a given machine, and massive
if it exceeds 50%
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Case of a lot of observations: two massive data sets X: n x p matrix
and Y: n x g matrix due to a large number of observations.

We suppose here that n is very large, but not p nor q.
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Case of a lot of observations: two massive data sets X: n x p matrix
and Y: n x g matrix due to a large number of observations.

We suppose here that n is very large, but not p nor q.

PLS algorithm mainly based on the SVD of Mp_1 = X _,Ys_q:
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Case of a lot of observations: two massive data sets X: n x p matrix
and Y: n x g matrix due to a large number of observations.

We suppose here that n is very large, but not p nor q.

PLS algorithm mainly based on the SVD of Mp_1 = X _,Ys_q:

Dimension of Mp_1: p x g matrix !!

This matrix fits into memory.

But not X nor Y.
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Computation of M = XTY by chunks

G
T T
M=XTY = Zx(g)v(g)
g:

All terms fit (successively) into memory!

P q

—_—%
Xi1) Y
X M)
X= Y= n
) Y@
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Computation of M = X"Y by chunks using R

v

No need to load the big matrices X and Y

» Use memory-mapped files (called “filebacking”) through the big-
memory package to allow matrices to exceed the RAM size.

v

A big.matrix is created which supports the use of shared memory
for efficiency in parallel computing.

foreach: package for running in parallel the computation of M by
chunks

\4
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Computation of M = X"Y by chunks using R

v

No need to load the big matrices X and Y

» Use memory-mapped files (called “filebacking”) through the big-
memory package to allow matrices to exceed the RAM size.

v

A big.matrix is created which supports the use of shared memory
for efficiency in parallel computing.

foreach: package for running in parallel the computation of M by
chunks

\4

Regularized PLS algorithm:
» Computation of the components (“Scores”):

Xu (nx1)and Yv (nx 1)

» Easy to compute by chunks and store in a big.matrix object.
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lllustration of group PLS with Big-Data

» Simulated: X (5GB) and Y (5GB);
» n = 560,000 observations, p = 400 and g = 500;

» Linked by two latent variables, made up of sparse linear combina-
tions of the original variables;

» Both X and Y have a group structure: 20 groups of 20 variables
for X and 25 groups of 20 variables for Y;

» Only 4 groups in each data set are relevant, 5 variables in each of
these groups are not relevant.
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X-variates Y-variates
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Figure 1: Comparison of gPLS and BIG-gPLS (for small n = 1,000)
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Figure 2: Use of BIG-gPLS. Left: small n. Right: Large n.
Blue: truth. Red: Recovered.
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Regularised PLS Discriminant Analysis

Categorical response variable becomes a dummy matrix in PLS algo-
rithms:

mmmmm

~~~~~

Xvaiale 2

Kvatate 3

]
Xvarae 1 Xevaiate 1
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Concluding Remarks and Take Home Message

We were able to derive a simple unified algorithm that perfoms stan-
dard, sparse, group and sparse group versions of the four classical
PLS algorithms (i)—(iv). (And also PLSDA.)

We used big memory objects, and a simple trick that makes our pro-
cedure scalable to big data (large n).

We also parallelized the code for faster computation.

This will soon been made available in our new R package: bigsgPLS.
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Thank you! Questions?
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