Probabilistic and Optimization Approaches in Classification

E. Le Pennec - CMAP, École polytechnique

JSTAR - AgroCampus, Rennes - 20/10/2016

- Introduction
- 2 Supervised Learning
- Models
- 4 Big Data and Numerical Issues
- Conclusion

Major Influences

Four major influences act today:

- The formal theories of statistics
- Accelerating developments in computers and display devices
- The challenge, in many fields, of more and ever larger bodies of data
- The emphasis on quantification in an ever wider variety of disciplines

Major Influences - Tukey (1962)

Four major influences act today:

- The formal theories of statistics
- Accelerating developments in computers and display devices
- The challenge, in many fields, of more and ever larger bodies of data
- The emphasis on quantification in an ever wider variety of disciplines
- He was talking of Data Analysis.
- Data mining, Machine learning, Big Data...

Data everywhere

- Huge volume,
- Huge variety...

Affordable computation units

- Cloud computing
- Graphical Processor Units (GPU)...
- Growing academic and industrial interest!

Figure 2-2. The data science process

- Doing Data Science: Straight talk from the frontline.
 - Rachel Schutt, Cathy O'Neil
 - O'Reilly

Big Data, Data Science and Machine Learning

- **Big Data**: buzzword to raise money (or data sets too large or too complex to be handled by the current system)
- Data Science: art (or science) of the generalizable extraction of knowledge from data.
- Machine Learning: construction and study of algorithms that can learn from and make predictions on data.
- Exciting challenges in the industrial **and** the academic worlds.

Machine Learning

- Fundamental ingredient in data science.
- Probability and Optimization play a central role.
- Model Competition/Collaboration
- New computational constraints in Big Data setting

- Introduction
- 2 Supervised Learning
- Models
- 4 Big Data and Numerical Issues
- Conclusion

- Introduction
- 2 Supervised Learning
- Models
- 4 Big Data and Numerical Issues
- Conclusion

A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Experience, Task and Performance measure

- Training data : $\mathcal{D} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)
- **Predictor**: $f: \mathcal{X} \to \mathcal{Y}$ measurable
- Cost/Loss function : $\ell(f(\mathbf{X}), Y)$ measure how well $f(\mathbf{X})$ "predicts" Y
- Risk:

$$\mathcal{R}(f) = \mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \mathbb{E}_{X}\left[\mathbb{E}_{Y|\mathbf{X}}\left[\ell(Y, f(\mathbf{X}))\right]\right]$$

• Often $\ell(f(\mathbf{X}), Y) = \mathbf{1}_{Y \neq f(\mathbf{X})}$ or $\ell(f(\mathbf{X}), Y) = |f(\mathbf{X}) - Y|^2$

Goal

• Learn a rule to construct a **classifier** $\widehat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. **the risk** $\mathcal{R}(\widehat{f})$ is **small on average** or with high probability with respect to \mathcal{D}_n .

ullet The best solution f^* (which is independent of \mathcal{D}_n) is

$$f^* = \arg\min_{f \in \mathcal{F}} R(f) = \arg\min_{f \in \mathcal{F}} \mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \arg\min_{f \in \mathcal{F}} \mathbb{E}_{\mathbf{X}}\left[\mathbb{E}_{Y|\mathbf{X}}\left[\ell(Y, f(\mathbf{x}))\right]\right]$$

Bayes Classifier (explicit solution)

• In binary classification with 0-1 loss:

$$f^*(\mathbf{X}) = \begin{cases} +1 & \text{if} \quad \mathbb{P}\left\{Y = +1 | \mathbf{X}\right\} \ge \mathbb{P}\left\{Y = -1 | \mathbf{X}\right\} \\ \Leftrightarrow \mathbb{P}\left\{Y = +1 | \mathbf{X}\right\} \ge 1/2 \\ -1 & \text{otherwise} \end{cases}$$

In regression with the quadratic loss

$$f^*(\mathbf{X}) = \mathbb{E}\left[Y|\mathbf{X}\right]$$

Issue: Explicit solution requires to **know** $\mathbb{E}[Y|X]$ for all values of X!

Machine Learning

• Learn a rule to construct a **classifier** $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. **the risk** $\mathcal{R}(\hat{f})$ is **small on average** or with high probability with respect to \mathcal{D}_n .

Canonical example: Empirical Risk Minimizer

- Restrict f to a subset of functions $S = \{f_{\theta}, \theta \in \Theta\}$
- Replace the minimization of the average loss by the minimization of the empirical loss

$$\widehat{f} = f_{\widehat{\theta}} = \underset{f_{\theta}, \theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(\mathbf{X}_i))$$

- Examples:
 - Linear regression
 - Linear discrimination with

$$\mathcal{S} = \{ \mathbf{x} \mapsto \operatorname{sign} \{ \boldsymbol{\beta}^T \mathbf{x} + \beta_0 \} / \boldsymbol{\beta} \in \mathbb{R}^d, \beta_0 \in \mathbb{R} \}$$

How to find a good function f with a small risk

$$R(f) = \mathbb{E}\left[\ell(Y, f(X))\right]$$
 ?

Canonical approach: $\hat{f}_{\mathcal{S}} = \operatorname{argmin}_{f \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(\mathbf{X}_i))$

Problems

- How to choose S?
- How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes classifier: **(Generalized) Linear Models, Kernel methods,** k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View

Solution: If necessary replace the loss ℓ by an upper bound ℓ' and minimize the empirical loss: **SVR**, **SVM**, **Neural Network**,**Tree**, **Boosting**

ullet If $Y|\mathbf{X}$ is known, one can compute the best solution f^*

$$\arg\min_{f\in\mathcal{F}}\mathbb{E}_{\mathbf{X}}\left[\mathbb{E}_{Y|\mathbf{X}}\left[\ell(Y,f(\mathbf{x}))\right]\right]$$

Bayes Plugin

- Learning: Estimation of Y|x and pluging of this estimate in the Bayes classifier
- Plugin: a classifier $\widehat{f}: \mathcal{X} \to \mathcal{Y}$
 - $\hat{f}(\mathbf{x}) = egin{cases} +1 & ext{if } \widehat{p}_{+1}(\mathbf{x}) \geq \widehat{p}_{-1}(\mathbf{x}) \ -1 & ext{otherwise} \end{cases}$
 - Quadratic loss:

$$\hat{f}(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{x}\right]$$

- Instantiations:
 - Generative Modeling and Bayesian Methods
 - Parametric Conditional Models
 - Kernel Conditional Density Methods
- Importance of a corresponding efficient numerical scheme!

• The best solution f^* is the one minimizing

$$f^* = \operatorname{arg\,min} R(f) = \operatorname{arg\,min} \mathbb{E} \left[\ell(Y, f(X)) \right]$$

Empirical Risk Minimization

- Restrict f to a subset of functions $S = \{f_{\theta}, \theta \in \Theta\}$
- Replace the minimization of the average loss by the minimization of the empirical loss

$$\widehat{f} = f_{\widehat{\theta}} = \underset{f_{\theta}, \theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i))$$

- **Issue:** Minimization may be impossible in practice.
- **Solution:** Replace ℓ by ℓ' a simpler (convex) majorant and **minimize** this upper-bound.
- Instantiation: Regression, SVM, Neural Networks...
- Importance of a corresponding efficient numerical scheme!

- Classification loss: $\ell^{0/1}(y, f(x)) = \mathbf{1}_{y \neq f(x)}$
- Not convex and not smooth!

Classical convexification

- Logistic loss: $\ell'(y, f(x)) = \log(1 + e^{-yf(x)})$ (Logistic / NN)
- Hinge loss: $\ell'(y, f(x)) = (1 yf(x))_+$ (SVM)
- Exponential loss: $\ell'(y, f(x)) = e^{-yf(x)}$ (Boosting...)
- very efficient numerical scheme!

Probabilistic Approach

- Principle: estimate the conditional law Y|X and use it to take an informed decision.
- Motto: If you know the world, everything is easy!
- Emphasis on Interpretation
- Pro:
 - Interpretable models.
 - Lots of flexibility in the generative model.
 - Simultaneous decision optimization.

Cons:

- Computational issue.
- No need to know the law to take a decision.

Optimization Approach

- Principle: construct a surrogate decision criterion and use it to take an optimized decision.
- Motto: You should focus on your goal!
- Emphasis on Prediction

Pro:

- Focus on the true goal!
- Can use very clever optimization algorithm.
- No need to obtain the best solution.

Cons:

- Black box model.
- Not robust to a change of decision zone.

- Introduction
- 2 Supervised Learning
- Models
- Big Data and Numerical Issues
- Conclusion

- General setting:
 - $\mathcal{F} = \{\text{measurable fonctions } \mathcal{X} \to \mathcal{Y}\}$
 - Best solution: $f^* = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{R}(f)$
 - ullet Class $\mathcal{S}\subset\mathcal{F}$ of functions
 - Ideal target in S: $f_S^* = \operatorname{argmin}_{f \in S} \mathcal{R}(f)$
 - ullet Estimate in \mathcal{S} : $\widehat{f}_{\mathcal{S}}$ obtained with a numerical algorithm

Approximation error and estimation error (Bias/Variance)

$$\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*) = \underbrace{\mathcal{R}(f_{\mathcal{S}}^*) - \mathcal{R}(f^*)}_{\text{Approximation error}} + \underbrace{\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f_{\mathcal{S}}^*)}_{\text{Estimation error}}$$

- Different behavior for different model complexity
- Low complexity model are easily learned but the approximation error ("bias") may be large (Under-fit).
- High complexity model may contains a good ideal target but the estimation error ("variance") can be large (Over-fit)

General Methodology

- **Modeling:** Chose $S = \{f_{\theta}, \theta \in \Theta\}$
- **Methodology:** Minimize over $\theta \in \Theta$

$$\frac{1}{n}\sum_{i=1}^{n}\ell'(y_i,f_{\theta}(x_i))$$

- Lots of freedom!
- Example of parametrization:
 - Linear: $f_{\theta}(x) = \langle \theta, x \rangle$ or $f_{\theta}(x) = \text{sign}(\langle \theta, x \rangle)$
 - (Deep) Neural Network: much more complex parametrization.
- Restriction on Θ:
 - $\|\theta\|_p \leq C$,
 - More complex restriction: $comp(\theta) \le C$
- Methodology:
 - Choice of the loss function ℓ' (Likelihood / Convex surrogate)
 - Choice of the minimization algorithm...

General Penalized Methodology

- **Modeling:** Chose $S = \{f_{\theta}, \theta \in \Theta\}$
- **Methodology:** Minimize over $\theta \in \Theta$

$$\frac{1}{n}\sum_{i=1}^{n}\ell'(y_i,f_{\theta}(x_i)) + \lambda \operatorname{comp}(\theta)$$

- Lots of freedom!
- Example of parametrization:
 - Linear: $f_{\theta}(x) = \langle \theta, x \rangle$ or $f_{\theta}(x) = \text{sign}(\langle \theta, x \rangle)$
 - (Deep) Neural Network: much more complex parametrization.
- Restriction on Θ:
 - $\|\theta\|_p \leq C$,
 - More complex restriction: $comp(\theta) \le C$
 - Penalization: Lagrangian reformulation
- Methodology:
 - Choice of the loss function ℓ' (Likelihood / Convex surrogate)
 - Choice of the minimization algorithm...

- Empirical error biased toward complex models!
- How to select the **best one**?

Error estimation

- Cross validation: Very efficient (and almost always used in practice!) but slightly biased as it target uses only a fraction of the data.
- **Penalization approach:** use empirical loss criterion but penalize it by a term increasing with the complexity of \mathcal{S} $R_n(\widehat{f}_{\mathcal{S}}) \to R_n(\widehat{f}_{\mathcal{S}}) + \text{pen}(\mathcal{S})...$
- Penalization calibration issue...
- Simultaneous CV control issue...

Practical Selection Methodology

- Choose a penalty/complexity shape $\widetilde{pen}(\theta)$.
- Compute the CV error for the minimizer with a penalty $\lambda \widetilde{\text{pen}}(\theta)$ for all $\lambda \in \Lambda$.
- Determine $\hat{\lambda}$ the λ minimizing the CV error.
- Compute the minimizer with the penalty $\widehat{\lambda} \widetilde{pen}(\theta)$.
- Requires a lot of minimizations! Hence optimization is the bottleneck!

Why not using only CV?

- If the penalized likelihood minimization is easy, much cheaper to compute the CV error for all $\lambda \in \Lambda$ than for all possible estimators...
- CV performs best when the set of candidates is not too big (or is structured...)

Selection of a Single Model

- Most classical scheme.
- Preserve interpretability of each model.
- Strong theoretical framework!

Mixture

- Combine (randomized) models build in parallel:
 - (Weighted) model averaging,
 - Exponential Weighted Aggregation,
 - Super Learner,
 - Bayesian averaging.
- Less theoretical analysis.

Sequential Combination

- Boosting / Greedy Gradient Descent Algorithm
- Very efficent in practice / Few convincing analysis...

- Introduction
- 2 Supervised Learning
- Models
- Big Data and Numerical Issues
- Conclusion

Hardware Constraints

- All the computations are done in a core using data stored somewhere nearby.
- Constrainst:
 - Data access / storage (Locality of Reference).
 - Multiple core architecture (Parallelization).
 - Cluster (Distribution)

Locality of Reference

Memory Issue

- Data should be as **close** as possible **from the core**:
 - **Speed/Price Hierarchy**: Cache > Memory > Disk > Network
 - **Size hierarchy**: Cache < Memory < Disk < Network.
- In memory:
 - Ideal case: dataset fits in the memory of a single computer.
 - Useless if data used only once... (bottleneck = disk)
- Memory usage:
 - Split and Apply: piecewise computation...
 - Memory growth faster than data growth (Death of big data?)
 - Memory req. may be (much) larger than data $(O(n^{\alpha})$ algo.)

Speed Issue

- Modern CPU: no more speed increases but more cores.
- Parallelization:
 - HPC / DS setting: CPU bound tasks / IO bound tasks.
 - Data science: Often embarrassingly parallel setting (no interaction between tasks).
- Not always acceleration due to IO limitation!

True Big Data Setting?

- Computation in a cluster:
 - Distribution of the data (DS),
 - or/and distribution of the computation (HPC)
- Hadoop/Spark realm.
- Locally **parallel in memory** computation are faster... if data **used more than once**.
- Real challenge when not (almost) embarrassingly parallel (interaction, graph...)

- Introduction
- 2 Supervised Learning
- Models
- 4 Big Data and Numerical Issues
- Conclusion

- Probabilistic vs Optimization approaches:
 - Related but different,
 - Interpretation vs Prediction,
 - Complementary approaches...
- **Models:** from selection to combination in prediction.
- Data Science vs Big Data:
 - Hardware constraints!
 - Lots of algorithmic challenges but few conceptual ones.
- Next project (with E. Moulines & E. Scornet, CMAP):
 - Exponentially Weighted Aggregation (L. Montuelle) vs Bayesian averaging.
 - Application to modified random forests.
 - Avoid arbitrary bootstrap and random feature subset sampling.
 - High dimensional MCMC scheme.

- Probabilistic vs Optimization approaches:
 - Related but different,
 - Interpretation vs Prediction,
 - Complementary approaches...
- **Models:** from selection to combination in prediction.
- Data Science vs Big Data:
 - Hardware constraints!
 - Lots of algorithmic challenges but few conceptual ones.
- Next project (with E. Moulines & E. Scornet, CMAP):
 - Exponentially Weighted Aggregation (L. Montuelle) vs Bayesian averaging.
 - Application to modified random forests.
 - Avoid arbitrary bootstrap and random feature subset sampling.
 - High dimensional MCMC scheme.
- More **deep science** in 2023?