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Data Science / Big Data Itroduction X

Major Influences

Four major influences act today:
@ The formal theories of statistics
@ Accelerating developments in computers and display devices

@ The challenge, in many fields, of more and ever larger bodies
of data

@ The emphasis on quantification in an ever wider variety of
disciplines




Data Science / Big Data Introduction X

Major Influences - Tukey (1962)

Four major influences act today:

@ The formal theories of statistics
@ Accelerating developments in computers and display devices

@ The challenge, in many fields, of more and ever larger bodies
of data

The emphasis on quantification in an ever wider variety of
disciplines

He was talking of Data Analysis.
@ Data mining, Machine learning, Big Data...



A new Context

Data everywhere

@ Huge volume,

@ Huge variety...

Introduction

Affordable computation units

@ Cloud computing
@ Graphical Processor Units (GPU)...

@ Growing academic and industrial interest!



Doing Data Science
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Figure 2-2. The data science process

@ Doing Data Science: Straight talk from the frontline.

e Rachel Schutt, Cathy O'Neil

o O'Reilly

X



Big Data and Machine Learning Introduction X

Big Data, Data Science and Machine Learning

e Big Data: buzzword to raise money (or data sets too large or
too complex to be handled by the current system)

e Data Science: art (or science) of the generalizable extraction
of knowledge from data.

@ Machine Learning: construction and study of algorithms
that can learn from and make predictions on data.

@ Exciting challenges in the industrial and the academic worlds.

Machine Learning

Fundamental ingredient in data science.
Probability and Optimization play a central role.

Model Competition/Collaboration

New computational constraints in Big Data setting
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SUperVISed Learnlng Supervised Learning X
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A definition by Tom Mitchell

(http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with
experience E.



http://www.cs.cmu.edu/~tom/

SuperVISed Learnlng Supervised Learning X

Experience, Task and Performance measure

e Training data : D = {(X¢, Y1),...,(Xp, Ys)} (iid. ~P)
@ Predictor: f : X — )Y measurable

@ Cost/Loss function : ¢(f(X), Y) measure how well f(X)
“predicts" Y
o Risk:
R(F) =E [L(Y, F(X))] = Ex [Eyix [((Y, F(X))]]

Often £(F(X), Y) = Ly_px) or £(F(X), Y) = [F(X) — Y2

Learn a rule to construct a classifier f € F from the training

o~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.




BeSt SOlUtIOﬂ Supervised Learning X

@ The best solution f* (which is independent of D,) is
f*=arg min R(f) = arg ;Tél]r_lE [((Y,f(X))] =arg )rcrg]r;Ex [Eyp( [y, f(x))]]

Bayes Classifier (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P{Y=+1X} >P{Y =—-1|X}
(X) = < P{Y=+1X} >1/2
—1 otherwise

o In regression with the quadratic loss
*(X) =E[Y|X]

<

Issue: Explicit solution requires to know E [Y|X] for all values of
X!

<




Goal Supervised Learning X

Machine Learning

e Learn a rule to construct a classifier f € F from the training

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

Canonical example: Empirical Risk Minimizer

@ Restrict f to a subset of functions S = {fy, 0 € O}

@ Replace the minimization of the average loss by the
minimization of the empirical loss

~ 17
f = > = argmin — (Y, fo(X;
z fﬁaeen;( (X))

@ Examples:

o Linear regression
e Linear discrimination with

S={x+ sign{B'x+ B} /B € R’ By € R}



PrOballty VS Optlmlzatlon? Supervised Learning

How to find a good function f with a small risk
R(f) =E[(Y,f(X))] 7

o~

Canonical approach: fs = argminscs 2 27, £( Y, F(X;))

Problems

@ How to choose §?

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods,
k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound ¢ and
minimize the empirical loss: SVR, SVM, Neural Network, Tree,
Boosting




PrObabIIIStIC ApproaCh Supervised Learning X

e If Y|X is known, one can compute the best solution f*
arg min Ex [Eyx [V F(x))]]

Bayes Plugin

e Learning: Estimation of Y|x and pluging of this estimate in
the Bayes classifier

@ Plugin: a classifier f x>y

o /%1 |oss: R +1 if pra(x) > po1(x)
f(x) = .
—1 otherwise
e Quadratic loss:

A

f(x) =E[Y]x]

o Instantiations:
o Generative Modeling and Bayesian Methods
e Parametric Conditional Models
o Kernel Conditional Density Methods

@ Importance of a corresponding efficient numerical scheme!



Optlmlzation ApproaCh Supervised Learning

The best solution f* is the one minimizing
f*=argmin R(f) = argminE [((Y, f(X))]

Empirical Risk Minimization

Restrict f to a subset of functions S = {fy,0 € ©}
Replace the minimization of the average loss by the
minimization of the empirical loss

n

~ 1
f =t =argmin— > Ly, fa(x;
5= aremir n; (vi, fo(xi))

Issue: Minimization may be impossible in practice.

Solution: Replace ¢ by ¢’ a simpler (convex) majorant and
minimize this upper-bound.

Instantiation: Regression, SVM, Neural Networks...

Importance of a corresponding efficient numerical scheme!



Classification Loss and Convexification Supervised Learning
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e Classification loss: ¢%/1(y, f(x)) = 1,500
@ Not convex and not smooth!

Classical convexification

o Logistic loss: #'(y, f(x)) = log(1 + e ")) (Logistic / NN)
e Hinge loss: ¢'(y,f(x)) = (1 — yf(x))+ (SVM)
o Exponential loss: #'(y, f(x)) = e ¥ (%) (Boosting...)

@ very efficient numerical scheme!



PrObablllstIC VS Optlmizathn Supervised Learning X

Probabilistic Approach Optimization Approach

@ Principle: estimate the @ Principle: construct a
conditional law Y'|X and surrogate decision criterion
use it to take an informed and use it to take an
decision. optimized decision.

o Motto: If you know the @ Motto: You should focus
world, everything is easy! on your goal!

@ Emphasis on Interpretation @ Emphasis on Prediction

o Pro: @ Pro:

o Interpretable models. e Focus on the true goal!

o Lots of flexibility in the e Can use very clever
generative model. optimization algorithm.

o Simultaneous decision e No need to obtain the
optimization. best solution.

o Cons: e Cons:

o Computational issue. o Black box model.
o No need to know the law e Not robust to a change of
to take a decision. ) decision zone. )
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Bias-Variance Dilemna Models

o General setting:

F = {measurable fonctions X — Y}
Best solution: f* = argmin,. » R(f)
Class S C F of functions

Ideal target in S: f& = argmingcs R(f)

e Estimate in S: ?5 obtained with a numerical algorithm

Approximation error and estimation error (Bias/Variance)

R(fs) — R(f*) = R() — R(f*) + R(Fs) — R(£)

Approximation error Estimation error
o Different behavior for different model complexity

@ Low complexity model are easily learned but the
approximation error (“bias”) may be large (Under-fit).

@ High complexity model may contains a good ideal target
but the estimation error (“variance”) can be large (Over-fit)

V.




Models and Optimization Models X

General Methodology

Modeling: Chose S = {fyp,0 € O}
Methodology: Minimize over § € ©

LS o)
i=1

Lots of freedom!
Example of parametrization:

o Linear: fy(x) = (0, x) or fy(x) = sign((0, x))

o (Deep) Neural Network: much more complex parametrization.
Restriction on ©:

o 0, < C,

e More complex restriction: comp(§) < C

Methodology:
o Choice of the loss function ¢’ (Likelihood / Convex surrogate)
e Choice of the minimization algorithm...



Models and Optimization Models X

General Penalized Methodology

Modeling: Chose S = {fyp,0 € O}
Methodology: Minimize over § € ©

1 n
- > U (yi, fa(xi)) + A comp(6)
i—1

Lots of freedom!
Example of parametrization:
o Linear: fy(x) = (0, x) or fy(x) = sign((0, x))
o (Deep) Neural Network: much more complex parametrization.
Restriction on ©:
o [0], <C,
e More complex restriction: comp(§) < C
e Penalization: Lagrangian reformulation
Methodology:
o Choice of the loss function ¢’ (Likelihood / Convex surrogate)
e Choice of the minimization algorithm...



Competition Between Several Models Models

Error

Model complexity

@ Empirical error biased toward complex models!
@ How to select the best one?

Error estimation

e Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.

@ Penalization approach: use empirical loss criterion but
penalize it by a term increasing with the complexity of S

Ra(fs) = Ra(fs) + pen(S)...

@ Penalization calibration issue...
@ Simultaneous CV control issue...



Penalization and Cross-Validation Models X

Practical Selection Methodology

@ Choose a penalty/complexity shape pen().

@ Compute the CV error for the minimizer with a penalty
Apen(0) for all A € A.

o Determine \ the A minimizing the CV error.

e Compute the minimizer with the penalty Xﬁéﬁ(Q).

@ Requires a lot of minimizations! Hence optimization is the
bottleneck!

Why not using only CV?

o If the penalized likelihood minimization is easy, much cheaper
to compute the CV error for all A € A than for all possible
estimators...

@ CV performs best when the set of candidates is not too big
(or is structured...)




Models: Selection or Combination Models

Selection of a Single Model

@ Most classical scheme.
@ Preserve interpretability of each model.

@ Strong theoretical framework!

@ Combine (randomized) models build in parallel:
(Weighted) model averaging,

Exponential Weighted Aggregation,

Super Learner,

Bayesian averaging.

@ Less theoretical analysis.

v

Sequential Combination

@ Boosting / Greedy Gradient Descent Algorithm

@ Very efficent in practice / Few convincing analysis...

A
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Blg Data? Big Data and

Numerical Issues
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Hardware Constraints

@ All the computations are done in a core using data stored
somewhere nearby.

o Constrainst:
o Data access / storage (Locality of Reference).
o Multiple core architecture (Parallelization).

o Cluster (Distribution)




Locality of Reference

Servers
(aka computers)

Faster, more expensive Processor core(s) L1/L2/L3 cache

Generally non persistent
DRAI
O.S. Virtual & physical _ NVRAM
Memory mapitange - NAND/Flash

Higher capacity
Lower cost

Persistent _
Distance

Locality of reference

o In memory:

o ldeal case: dataset fits in the memory of a single computer.

External memory (storage)

Networked, local, remote, cloud

Memory Issue
@ Data should be as close as possible from the core:

o Speed/Price Hierarchy: Cache > Memory > Disk > Network
e Size hierarchy: Cache < Memory < Disk < Network.

Big Data and
Numerical Issues

o Useless if data used only once... (bottleneck = disk)

e Memory usage:

e Split and Apply: piecewise computation...
o Memory growth faster than data growth (Death of big data?)
o Memory req. may be (much) larger than data (O(n®) algo.)

X



Para”ellzathn Big Data and

Numerical Issues

Multi-core Processor

individual individual ndividual individual
remo emor emor emor
Shared Memory

Bus Interface
I Chip Boundary
Off-Chip Component

Speed lIssue

@ Modern CPU: no more speed increases but more cores.
o Parallelization:

o HPC / DS setting: CPU bound tasks / 10 bound tasks.
e Data science: Often embarrassingly parallel setting
(no interaction between tasks).

@ Not always acceleration due to 10 limitation!




DIStI’IbUtIOﬂ Big Data and X

Numerical Issues vt

spark:Transformations & Actions

True Big Data Setting?

o Computation in a cluster:

e Distribution of the data (DS),
e or/and distribution of the computation (HPC)

e Hadoop/Spark realm.

@ Locally parallel in memory computation are faster... if data
used more than once.

@ Real challenge when not (almost) embarrassingly parallel
(interaction, graph...)
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COﬂClUSIOn Conclusion

Probabilistic vs Optimization approaches:

°
o Related but different,
e Interpretation vs Prediction,
e Complementary approaches...
e Models: from selection to combination in prediction.

e Data Science vs Big Data:
e Hardware constraints!
e Lots of algorithmic challenges but few conceptual ones.

Next project (with E. Moulines & E. Scornet, CMAP):

e Exponentially Weighted Aggregation (L. Montuelle) vs
Bayesian averaging.
e Application to modified random forests.

e Avoid arbitrary bootstrap and random feature subset sampling.

e High dimensional MCMC scheme.

X



COﬂClUSIOn Conclusion

Probabilistic vs Optimization approaches:

o Related but different,
e Interpretation vs Prediction,
e Complementary approaches...

Models: from selection to combination in prediction.

Data Science vs Big Data:

e Hardware constraints!
e Lots of algorithmic challenges but few conceptual ones.

Next project (with E. Moulines & E. Scornet, CMAP):

e Exponentially Weighted Aggregation (L. Montuelle) vs
Bayesian averaging.
e Application to modified random forests.

e Avoid arbitrary bootstrap and random feature subset sampling.

e High dimensional MCMC scheme.
More deep science in 20237

X
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