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IntroductionData is the new Oil!



IntroductionData Science / Big Data

Major Influences

- Tukey (1962)

Four major influences act today:
The formal theories of statistics
Accelerating developments in computers and display devices
The challenge, in many fields, of more and ever larger bodies
of data
The emphasis on quantification in an ever wider variety of
disciplines

He was talking of Data Analysis.
Data mining, Machine learning, Big Data...
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IntroductionA new Context

Data everywhere
Huge volume,
Huge variety...

Affordable computation units
Cloud computing
Graphical Processor Units (GPU)...

Growing academic and industrial interest!



IntroductionDoing Data Science

Doing Data Science: Straight talk from the frontline.
Rachel Schutt, Cathy O’Neil
O’Reilly



IntroductionBig Data and Machine Learning

Big Data, Data Science and Machine Learning
Big Data: buzzword to raise money (or data sets too large or
too complex to be handled by the current system)
Data Science: art (or science) of the generalizable extraction
of knowledge from data.
Machine Learning: construction and study of algorithms
that can learn from and make predictions on data.

Exciting challenges in the industrial and the academic worlds.

Machine Learning
Fundamental ingredient in data science.
Probability and Optimization play a central role.
Model Competition/Collaboration
New computational constraints in Big Data setting
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Supervised LearningSupervised Learning

A definition by Tom Mitchell
(http://www.cs.cmu.edu/~tom/)
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with
experience E.

http://www.cs.cmu.edu/~tom/


Supervised LearningSupervised Learning

Experience, Task and Performance measure
Training data : D = {(X1,Y1), . . . , (Xn,Yn)} (i.i.d. ∼ P)
Predictor: f : X → Y measurable
Cost/Loss function : `(f (X),Y ) measure how well f (X)
“predicts" Y
Risk:

R(f ) = E [`(Y , f (X))] = EX
[
EY |X [`(Y , f (X))]

]
Often `(f (X),Y ) = 1Y 6=f (X) or `(f (X),Y ) = |f (X)− Y |2

Goal
Learn a rule to construct a classifier f̂ ∈ F from the training
data Dn s.t. the risk R(f̂ ) is small on average or with high
probability with respect to Dn.



Supervised LearningBest Solution

The best solution f ∗ (which is independent of Dn) is
f ∗ = argmin

f ∈F
R(f ) = argmin

f ∈F
E [`(Y , f (X))] = argmin

f ∈F
EX

[
EY |X [`(Y , f (x))]

]
Bayes Classifier (explicit solution)

In binary classification with 0− 1 loss:

f ∗(X) =


+1 if P {Y = +1|X} ≥ P {Y = −1|X}

⇔ P {Y = +1|X} ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ∗(X) = E [Y |X]

Issue: Explicit solution requires to know E [Y |X] for all values of
X!



Supervised LearningGoal

Machine Learning
Learn a rule to construct a classifier f̂ ∈ F from the training
data Dn s.t. the risk R(f̂ ) is small on average or with high
probability with respect to Dn.

Canonical example: Empirical Risk Minimizer
Restrict f to a subset of functions S = {fθ, θ ∈ Θ}
Replace the minimization of the average loss by the
minimization of the empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

`(Yi , fθ(Xi ))

Examples:
Linear regression
Linear discrimination with

S = {x 7→ sign{βTx + β0} /β ∈ Rd , β0 ∈ R}



Supervised LearningProbality vs Optimization?
How to find a good function f with a small risk

R(f ) = E [`(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n

∑n
i=1 `(Yi , f (Xi ))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X, estimate Y |X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods,
k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View
Solution: If necessary replace the loss ` by an upper bound `′ and
minimize the empirical loss: SVR, SVM, Neural Network,Tree,
Boosting



Supervised LearningProbabilistic Approach
If Y |X is known, one can compute the best solution f ∗

argmin
f ∈F

EX
[
EY |X [`(Y , f (x))]

]
Bayes Plugin

Learning: Estimation of Y |x and pluging of this estimate in
the Bayes classifier
Plugin: a classifier f̂ : X → Y

`0/1 loss:
f̂ (x) =

{
+1 if p̂+1(x) ≥ p̂−1(x)
−1 otherwise

Quadratic loss:
f̂ (x) = E [Y |x]

Instantiations:
Generative Modeling and Bayesian Methods
Parametric Conditional Models
Kernel Conditional Density Methods

Importance of a corresponding efficient numerical scheme!



Supervised LearningOptimization Approach

The best solution f ∗ is the one minimizing
f ∗ = argminR(f ) = argminE [`(Y , f (X ))]

Empirical Risk Minimization
Restrict f to a subset of functions S = {fθ, θ ∈ Θ}
Replace the minimization of the average loss by the
minimization of the empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

`(yi , fθ(xi ))

Issue: Minimization may be impossible in practice.
Solution: Replace ` by `′ a simpler (convex) majorant and
minimize this upper-bound.
Instantiation: Regression, SVM, Neural Networks...
Importance of a corresponding efficient numerical scheme!



Supervised LearningClassification Loss and Convexification

Classification loss: `0/1(y , f (x)) = 1y 6=f (x)
Not convex and not smooth!

Classical convexification
Logistic loss: `′(y , f (x)) = log(1 + e−yf (x)) (Logistic / NN)
Hinge loss: `′(y , f (x)) = (1− yf (x))+ (SVM)
Exponential loss: `′(y , f (x)) = e−yf (x) (Boosting...)

very efficient numerical scheme!



Supervised LearningProbabilistic vs Optimization
Probabilistic Approach

Principle: estimate the
conditional law Y |X and
use it to take an informed
decision.
Motto: If you know the
world, everything is easy!
Emphasis on Interpretation
Pro:

Interpretable models.
Lots of flexibility in the
generative model.
Simultaneous decision
optimization.

Cons:
Computational issue.
No need to know the law
to take a decision.

Optimization Approach
Principle: construct a
surrogate decision criterion
and use it to take an
optimized decision.
Motto: You should focus
on your goal!
Emphasis on Prediction
Pro:

Focus on the true goal!
Can use very clever
optimization algorithm.
No need to obtain the
best solution.

Cons:
Black box model.
Not robust to a change of
decision zone.
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ModelsBias-Variance Dilemna

General setting:
F = {measurable fonctions X → Y}
Best solution: f ∗ = argminf∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ∗S = argminf∈S R(f )
Estimate in S: f̂S obtained with a numerical algorithm

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ∗) = R(f ∗S )−R(f ∗)︸ ︷︷ ︸
Approximation error

+R(f̂S)−R(f ∗S )︸ ︷︷ ︸
Estimation error

Different behavior for different model complexity
Low complexity model are easily learned but the
approximation error (“bias”) may be large (Under-fit).
High complexity model may contains a good ideal target
but the estimation error (“variance”) can be large (Over-fit)



ModelsModels and Optimization

General Methodology
Modeling: Chose S = {fθ, θ ∈ Θ}
Methodology: Minimize over θ ∈ Θ

1
n

n∑
i=1

`′(yi , fθ(xi ))

+ λ comp(θ)

Lots of freedom!
Example of parametrization:

Linear: fθ(x) = 〈θ, x〉 or fθ(x) = sign(〈θ, x〉)
(Deep) Neural Network: much more complex parametrization.

Restriction on Θ:
‖θ‖p ≤ C ,
More complex restriction: comp(θ) ≤ C

Penalization: Lagrangian reformulation

Methodology:
Choice of the loss function `′ (Likelihood / Convex surrogate)
Choice of the minimization algorithm...



ModelsModels and Optimization

General Penalized Methodology
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ModelsCompetition Between Several Models

Empirical error biased toward complex models!
How to select the best one?

Error estimation
Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.
Penalization approach: use empirical loss criterion but
penalize it by a term increasing with the complexity of S

Rn(f̂S)→ Rn(f̂S) + pen(S)...

Penalization calibration issue...
Simultaneous CV control issue...



ModelsPenalization and Cross-Validation

Practical Selection Methodology
Choose a penalty/complexity shape p̃en(θ).
Compute the CV error for the minimizer with a penalty
λp̃en(θ) for all λ ∈ Λ.
Determine λ̂ the λ minimizing the CV error.
Compute the minimizer with the penalty λ̂p̃en(θ).

Requires a lot of minimizations! Hence optimization is the
bottleneck!

Why not using only CV?
If the penalized likelihood minimization is easy, much cheaper
to compute the CV error for all λ ∈ Λ than for all possible
estimators...
CV performs best when the set of candidates is not too big
(or is structured...)



ModelsModels: Selection or Combination
Selection of a Single Model

Most classical scheme.
Preserve interpretability of each model.
Strong theoretical framework!

Mixture
Combine (randomized) models build in parallel:

(Weighted) model averaging,
Exponential Weighted Aggregation,
Super Learner,
Bayesian averaging.

Less theoretical analysis.

Sequential Combination
Boosting / Greedy Gradient Descent Algorithm
Very efficent in practice / Few convincing analysis...
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Big Data and
Numerical Issues

Big Data?

Hardware Constraints
All the computations are done in a core using data stored
somewhere nearby.
Constrainst:

Data access / storage (Locality of Reference).
Multiple core architecture (Parallelization).
Cluster (Distribution)



Big Data and
Numerical Issues

Locality of Reference

Memory Issue
Data should be as close as possible from the core:

Speed/Price Hierarchy: Cache > Memory > Disk > Network
Size hierarchy: Cache < Memory < Disk < Network.

In memory:
Ideal case: dataset fits in the memory of a single computer.
Useless if data used only once... (bottleneck = disk)

Memory usage:
Split and Apply: piecewise computation...
Memory growth faster than data growth (Death of big data?)
Memory req. may be (much) larger than data (O(nα) algo.)



Big Data and
Numerical Issues

Parallelization

Speed Issue
Modern CPU: no more speed increases but more cores.
Parallelization:

HPC / DS setting: CPU bound tasks / IO bound tasks.
Data science: Often embarrassingly parallel setting
(no interaction between tasks).

Not always acceleration due to IO limitation!



Big Data and
Numerical Issues

Distribution

True Big Data Setting?
Computation in a cluster:

Distribution of the data (DS),
or/and distribution of the computation (HPC)

Hadoop/Spark realm.
Locally parallel in memory computation are faster... if data
used more than once.
Real challenge when not (almost) embarrassingly parallel
(interaction, graph...)
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ConclusionConclusion

Probabilistic vs Optimization approaches:
Related but different,
Interpretation vs Prediction,
Complementary approaches...

Models: from selection to combination in prediction.
Data Science vs Big Data:

Hardware constraints!
Lots of algorithmic challenges but few conceptual ones.

Next project (with E. Moulines & E. Scornet, CMAP):
Exponentially Weighted Aggregation (L. Montuelle) vs
Bayesian averaging.
Application to modified random forests.
Avoid arbitrary bootstrap and random feature subset sampling.
High dimensional MCMC scheme.

More deep science in 2023?
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