How to learn from a lot: Empirical Bayes in high-dimensional prediction settings

Mark van de Wiel ${ }^{1,2}$

${ }^{1}$ Department of Epidemiology and Biostatistics, VU University medical center
${ }^{2}$ Department of Mathematics, VU University, Amsterdam, The Netherlands

Contributions by: Putri Novianti (VUmc), Magnus Münch (Leiden/VUmc), Dennis te Beest (VUmc)

Our group: www.bigstatistics.nl

Overview

1. Motivating example (ridge regression)
2. Introduction Empirical Bayes (EB)

Overview

1. Motivating example (ridge regression)
2. Introduction Empirical Bayes (EB)
3. EB methods, hard: Maximization marginal likelihood
4. Intermezzo: Co-data
5. EB methods, easier: Method of Moments

- Group-regularized ridge and elastic net
- Example: Cervical cancer diagnostics

6. EB methods, easy

- Random forest
- Example: predicting metastasis for oral cancer

Overview

1. Motivating example (ridge regression)
2. Introduction Empirical Bayes (EB)
3. EB methods, hard: Maximization marginal likelihood
4. Intermezzo: Co-data
5. EB methods, easier: Method of Moments

- Group-regularized ridge and elastic net
- Example: Cervical cancer diagnostics

6. EB methods, easy

- Random forest
- Example: predicting metastasis for oral cancer

7. Discussion (Full Bayes, Cross-validation)

Motivating example, Simulated

- Suppose $p=50$ covariates
- $1, \ldots, 25$ associated with response $\mathbf{Y} ; 26, \ldots, 50$ not
- Sample size $n=40$

Motivating example, Simulated

- Suppose $p=50$ covariates
- $1, \ldots, 25$ associated with response $\mathbf{Y} ; 26, \ldots, 50$ not
- Sample size $n=40$
- Ordinary ridge regression:

$$
\operatorname{argmax}_{\boldsymbol{\beta}} \mathcal{L}(\mathbf{Y} ; \boldsymbol{\beta})-\lambda \sum_{i=1}^{50} \beta_{j}^{2}
$$

- Equivalent to $\beta_{j} \sim N\left(0, \sigma^{2}\right), j=1, \ldots, 50$

Coefficients

Figure: Ridge regression coefficients, Group 1, Group2

Sums of squares, Coefficients

> mean(coefs[1:25]~2)
[1] 0.001723317
> mean(coefs $\left.[-(1: 25)]^{\wedge} 2\right)$
[1] 0.0004957746

Sums of squares, Coefficients

> mean(coefs[1:25]~2)
[1] 0.001723317
$>$ mean (coefs $\left.[-(1: 25)]^{\wedge} 2\right)$
[1] 0.0004957746

Better priors (ad hoc): $\beta_{j} \sim N\left(0, \sigma_{1}^{2}\right), j \in$ group 1, $\beta_{j} \sim N\left(0, \sigma_{2}^{2}\right), j \in$ group 2 with $\sigma_{1}^{2}=\mathbf{3} \sigma_{2}^{2}$.

Equivalently, $\lambda_{1}=\frac{1}{3} \lambda_{2}$
Refitting reduces CV-MSE by 10-20\%; Rank correlation prediction with response increases by 10-40\%.

Prelude to variable selection

10 strongest covariates [Should be all from group 1]:
> top10_ridge
[1] $\begin{array}{llllllllll}1 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 2 & 2\end{array}$
> top10_groupridge
[1] $\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

To be continued...

Setting

- Prediction or Diagnosis
- Main study
- Variables $i=1, \ldots, p$; Individuals $j=1, \ldots, n ; p>n$
- Focus on binary response Y_{j} (e.g. case vs control)
- Measurements $\mathbf{X}_{j}=\left(X_{1 j}, \ldots, X_{p j}\right)$
- Goal: find f such that $Y_{j} \approx f\left(\mathbf{X}_{j}\right)$
- f : logistic regression, random forest, spike-and-slab, etc.
- Some form of regularization required
- Focus
- Differential regularization based on prior information

Empirical Bayes (EB)

- Regularization by informative prior (ridge: $\beta_{i} \sim N\left(0, \sigma^{2}\right)$)
- Empirical Bayes: estimate prior parameters from data
- EB also applicable in frequentist settings. Example: Logistic ridge, $\lambda=1 /\left(2 \sigma^{2}\right)$:
$\operatorname{argmax}_{\boldsymbol{\beta}} \mathcal{L}(\mathbf{Y} ; \boldsymbol{\beta})-\lambda\|\boldsymbol{\beta}\|_{2}=\hat{\boldsymbol{\beta}}_{\lambda}=\hat{\boldsymbol{\beta}}_{\sigma}^{\mathrm{MAP}}=\operatorname{mode}\left(\pi_{\sigma}(\boldsymbol{\beta} \mid \mathbf{Y})\right)$
- References
- Books: Carlin \& Louis, 2000; Efron, 2010
- Review: Van Houwelingen, Biom J, 2014

Hard EB: Maximum marginal Likelihood

$\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)$. Prior: $\pi_{\boldsymbol{\alpha}}(\boldsymbol{\beta}), \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{\mathcal{G}}\right)$
Marginal likelihood maximization:

$$
\hat{\boldsymbol{\alpha}}=\operatorname{argmax}_{\alpha} \mathrm{ML}(\boldsymbol{\alpha}), \text { with } \mathrm{ML}(\boldsymbol{\alpha})=\int_{\boldsymbol{\beta}} \mathcal{L}(\mathbf{Y} ; \boldsymbol{\beta}) \pi_{\boldsymbol{\alpha}}(\boldsymbol{\beta}) d \boldsymbol{\beta}
$$

Hard EB: Maximum marginal Likelihood

$\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)$. Prior: $\pi_{\boldsymbol{\alpha}}(\boldsymbol{\beta}), \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{\boldsymbol{G}}\right)$
Marginal likelihood maximization:

$$
\hat{\boldsymbol{\alpha}}=\operatorname{argmax}_{\alpha} \mathrm{ML}(\boldsymbol{\alpha}), \text { with } \mathrm{ML}(\boldsymbol{\alpha})=\int_{\boldsymbol{\beta}} \mathcal{L}(\mathbf{Y} ; \boldsymbol{\beta}) \pi_{\boldsymbol{\alpha}}(\boldsymbol{\beta}) d \boldsymbol{\beta},
$$

Requires a likelihood. Optimization is hard, because

1. High-dimensional integral
2. Competitive prior parameters

Problem 1: High-dimensional integral

Solutions:

- Laplace approximation; may work well for sparse settings (Shun \& McCullagh, JRSSB, 1995)
- EM on Gibbs samples (Casella, Biostatistics, 2001). Conceptually easy, computationally (often) terrible.
- EM on Variational Bayes approximation (Bernardo et al., Bayesian analysis, 2003). Fast, but requires dedicated approximations.

Problem 2: competitive prior parameters

- Elastic net:

$$
\operatorname{argmax}_{\boldsymbol{\beta}} \mathcal{L}(\mathbf{Y} ; \boldsymbol{\beta})-\lambda_{1}\|\boldsymbol{\beta}\|_{1}-\lambda_{2}\|\boldsymbol{\beta}\|_{2}
$$

- Equivalent Bayesian formulation, prior for β_{j} :

$$
\left.\pi\left(\beta_{j}\right) \propto \pi_{\lambda}\left(\beta_{j}\right) \propto \exp \left[-\lambda_{1}\left|\beta_{j}\right|-\lambda_{2} \beta_{j}^{2}\right\}\right],
$$

- λ_{1} and λ_{2} are competitive, also for CV (Waldron et al., 2011, Bioinf.)
- Small simulation study, linear model:

$$
p=200, n=100,\left(\lambda_{1}, \lambda_{2}\right)=(2,2)
$$

Problem 2: competitive prior parameters

Simulation, linear model: $p=200, n=100,\left(\lambda_{1}, \lambda_{2}\right)=(2,2)$
Bayesian elastic net: Li \& Nin, Bayesian Analysis, 2010 Marginal likelihood from Gibbs: Chib, JASA, 1995

Problem 2: competitive prior parameters

Simulation, linear model: $p=200, n=100,\left(\lambda_{1}, \lambda_{2}\right)=(2,2)$
Bayesian elastic net: Li \& Nin, Bayesian Analysis, 2010 Marginal likelihood from Gibbs: Chib, JASA, 1995

Marginal likelihood as a function of λ_{1} and λ_{2}

Intermezzo: Prior info from co-data

Definition Co-data: any information on the variables that does not use the response labels of the primary data

Examples of co-data

1. Published gene signature. Two groups of variables
2. Chromosome. Results in 24 groups
3. p-values from external study

Intermezzo: Prior info from co-data

Definition Co-data: any information on the variables that does not use the response labels of the primary data

Examples of co-data

1. Published gene signature. Two groups of variables
2. Chromosome. Results in 24 groups
3. p-values from external study

Idea: Use different tuning parameters $\lambda_{1}, \ldots, \lambda_{G}$ across G co-data-based groups. E.g. in ridge:

$$
\operatorname{argmax}_{\boldsymbol{\beta}} \mathcal{L}(\mathbf{Y} ; \boldsymbol{\beta})-\sum_{g=1}^{G} \lambda_{g}\left\|\boldsymbol{\beta}_{g}\right\|_{2}
$$

EB, (somewhat) easier: Moment estimation*

Motivating example: estimate $\sigma_{1}^{2}, \sigma_{2}^{2}$ for (group) ridge:
$\beta_{j} \sim N\left(0, \sigma_{1}^{2}\right), j \in$ group $1, \beta_{j} \sim N\left(0, \sigma_{2}^{2}\right), j \in$ group 2
Idea: equate empirical moment(s) to theoretical ones

EB, (somewhat) easier: Moment estimation*

Motivating example: estimate $\sigma_{1}^{2}, \sigma_{2}^{2}$ for (group) ridge:
$\beta_{j} \sim N\left(0, \sigma_{1}^{2}\right), j \in$ group $1, \beta_{j} \sim N\left(0, \sigma_{2}^{2}\right), j \in$ group 2
Idea: equate empirical moment(s) to theoretical ones

$$
\begin{aligned}
& \frac{1}{p_{1}} \sum_{j \in \text { group } 1} \hat{\beta}_{j}^{2} \approx \frac{1}{p_{1}} \sum_{j \in \text { group } 1} E_{\boldsymbol{\beta}}\left[E\left[\hat{\beta}_{j}^{2}(\mathbf{Y}) \mid \boldsymbol{\beta}\right]\right]:=g_{1}\left(\sigma_{1}, \sigma_{2}\right) \\
& \frac{1}{p_{2}} \sum_{j \in \text { group 2 }} \hat{\beta}_{j}^{2} \approx \frac{1}{p_{2}} \sum_{j \in \text { group 2 }} E_{\beta}\left[E\left[\hat{\beta}_{j}^{2}(\mathbf{Y}) \mid \boldsymbol{\beta}\right]\right]:=g_{2}\left(\sigma_{1}, \sigma_{2}\right),
\end{aligned}
$$

where E_{β} denoted expectation w.r.t. the prior(s) of $\boldsymbol{\beta}$.

[^0]
EB: Moment estimation

$$
\frac{1}{p_{1}} \sum_{j \in \text { group } 1} \hat{\beta}_{j}^{2} \approx \frac{1}{p_{1}} \sum_{j \in \text { group } 1} E_{\boldsymbol{\beta}}\left[E\left[\hat{\beta}_{j}^{2}(\mathbf{Y}) \mid \boldsymbol{\beta}\right]\right]:=g_{1}\left(\sigma_{1}, \sigma_{2}\right)
$$

- $E\left[\hat{\beta}_{j}^{2}(\mathbf{Y}) \mid \boldsymbol{\beta}\right]=V\left[\hat{\beta}_{j}(\mathbf{Y})\right]+E\left[\hat{\beta}_{j}(\mathbf{Y}) \mid \boldsymbol{\beta}\right]^{2}=v_{j}+e_{j}^{2}$.
- v_{j} : known and constant in β_{j}.
- $e_{j}=\sum_{k} c_{j k} \beta_{k}, c_{j k}$ known ${ }^{\dagger}$. Penalty causes bias!

[^1]
EB: Moment estimation

$$
\frac{1}{p_{1}} \sum_{j \in \text { group } 1} \hat{\beta}_{j}^{2} \approx \frac{1}{p_{1}} \sum_{j \in \text { group } 1} E_{\boldsymbol{\beta}}\left[E\left[\hat{\beta}_{j}^{2}(\mathbf{Y}) \mid \boldsymbol{\beta}\right]\right]:=g_{1}\left(\sigma_{1}, \sigma_{2}\right)
$$

- $E\left[\hat{\beta}_{j}^{2}(\mathbf{Y}) \mid \boldsymbol{\beta}\right]=V\left[\hat{\beta}_{j}(\mathbf{Y})\right]+E\left[\hat{\beta}_{j}(\mathbf{Y}) \mid \boldsymbol{\beta}\right]^{2}=v_{j}+e_{j}^{2}$.
- v_{j} : known and constant in β_{j}.
- $e_{j}=\sum_{k} c_{j k} \beta_{k}, c_{j k}$ known ${ }^{\dagger}$. Penalty causes bias!
- For $E_{\beta}\left[e_{j}^{2}\right]: E_{\beta}\left[\beta_{j} \beta_{k}\right]=0, E_{\beta}\left[\beta_{j}^{2}\right]=\sigma_{1}^{2}$ and $E_{\beta}\left[\beta_{j}^{2}\right]=\sigma_{2}^{2}$
\Longrightarrow linear equation in $\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)$

[^2]
Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in a group elastic net setting ${ }^{\ddagger}$

[^3]
Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in a group elastic net setting ${ }^{\ddagger}$

Ad-hoc solution:

1. Estimate group penalties from ridge regression, possibly for multiple groupings
2. Select k variables by introducing non-grouped L_{1} penalty
3. Refit the model using the selected variables and their respective L_{2} penalties
[^4]
Example: Diagnostics for cervical cancer

Current tests: Based on HPV (sometimes) i.c.w. cytology \Longrightarrow accurate, but requiring high standards of cytological training

Additional problem: Some women do not show up for screening

Molecular tests: Easy to implement, objective and potentially cost-effective + can be applied to self samples.

Challenging: Because self samples are of lower quality

Cervical carcinogenesis

Goal: Detect CIN3 lesions, to be removed surgically

Example: Diagnostics for cervical cancer

Example: Diagnostics for cervical cancer ${ }^{\mathbb{\|}}$

Goal: Select markers for classifying Normal vs CIN3
\Longrightarrow final goal is a cheap PCR assay

Data:

- miRNA sequencing data
- $n=56$: 32 Normal, 24 CIN3
- $p=772$ (after filtering lowly abundant ones).
- Sqrt-transformed to quasi-Gaussian scale
- Standardized for penalty to have the same effect ${ }^{\S}$.

[^5]
Example: Diagnostics for cervical cancer

Co-data

- Conservation status:

1. Non-conserved (552)
2. Conserved across mammals (72)
3. Broadly conserved, across most vertebrates (148)

- Standard deviation per variable
- 10 groups of variable with decreasing s.d.
- Allows natural variability to impact the classifier via penalty weights

Co-data results

$\lambda_{g} \propto \sigma_{g}^{-2} ;$ Penalty multipliers $\lambda_{g}^{\prime}: \lambda_{g}=\lambda_{g}^{\prime} \lambda, g=1, \ldots, G$

Co-data results

$\lambda_{g} \propto \sigma_{g}^{-2} ;$ Penalty multipliers $\lambda_{g}^{\prime}: \lambda_{g}=\lambda_{g}^{\prime} \lambda, g=1, \ldots, G$
Conservation status:

1. Non-conserved (552): $\lambda_{1}^{\prime}=1.84$
2. Conserved across mammals (72): $\lambda_{1}^{\prime}=0.61$
3. Broadly conserved across vertebrates (148): $\lambda_{3}^{\prime}=0.30$

Co-data results

$\lambda_{g} \propto \sigma_{g}^{-2} ;$ Penalty multipliers $\lambda_{g}^{\prime}: \lambda_{g}=\lambda_{g}^{\prime} \lambda, g=1, \ldots, G$
Conservation status:

1. Non-conserved (552): $\lambda_{1}^{\prime}=1.84$
2. Conserved across mammals (72): $\lambda_{1}^{\prime}=0.61$
3. Broadly conserved across vertebrates (148): $\lambda_{3}^{\prime}=0.30$

Standard deviation Range from $\lambda_{1}^{\prime}=0.56$ (large s.d.) to $\lambda_{10}^{\prime}=1.80$ (small s.d.)
\Longrightarrow Indeed, partly 'undoes' the effect of standardization.

Variable selection: Data example

 AUC assessed by LOOCV

GRridge + EN selection,Lasso,Elastic Net

EB, easy: Random Forest

Random Forest Classifier

- 'Regularization' by Uniform sampling of $m_{\mathrm{tr}}=\sqrt{p}$ candidate variables per node split

EB, easy: Random Forest

Random Forest Classifier

- 'Regularization' by Uniform sampling of $m_{\text {try }}=\sqrt{p}$ candidate variables per node split
- Idea: Replace uniform 'prior' by one informed by co-data
- No likelihood: informal Empirical Bayes

Co-RF: Algorithm

1. Fit ordinary Random Forest (RF)
2. Calculate for each variable i how often selected: v_{i}
3. Determine S potentially relevant co-data sources, $c_{i s}, i=1, \ldots, p, s=1, \ldots, S$

Co-RF: Algorithm

1. Fit ordinary Random Forest (RF)
2. Calculate for each variable i how often selected: v_{i}
3. Determine S potentially relevant co-data sources, $c_{i s}, i=1, \ldots, p, s=1, \ldots, S$
4. Robustly regress v_{i} on co-data info C_{i}
5. Regression renders fitted selection frequency: f_{i}
6. Truncate $f_{i}: f_{i}^{\prime}=\left(f_{i}-\gamma E\left[f_{i}^{\text {uni }}\right]\right)_{+}$
7. Run new RF, with prior $p_{i}^{\text {new }} \propto f_{i}^{\prime}$ per node split

Co-RF: the regression

- Variables are the 'samples'. Only interested in mean approximation:

$$
v_{i} \approx g_{\alpha}\left(C_{i}\right)
$$

- Regression: parsimonious to avoid overfitting!
- Nominal co-data: cluster small groups of variables
- Continuous co-data:
- Parameterize (e.g. $\alpha \log \left(\mathrm{p}_{i}\right), p_{i}$: external p-value)
- Or (monotone), penalized spline

Examplel: Oral cancer

Setting

- TCGA data, oral cancer, $n=262, p=16.012$
- Response: Lymph node metastasis (Yes/No)
- Main data: normalized mRNA expression, RNAseq
- Co-data: Kendall correlation with matched DNA copy number data (gene-gene)
"by Dennis te Beest

Why DNA as co-data?

1. DNA copy number in tumor affects mRNA expression

2. DNA is more stable than mRNA
3. Co-data: DNA not required for future samples (as it would be for integrated classifiers)

Regression on co-data: monotone spline

Classification results

- Accuracy assessed by 10-fold CV
- Number of misclassifications drops from 112 (43\%) to 88 (34\%)
- PPV increases from 59\% to 66\%
- NPV increases from 53% to 67%

Software, handling co-data

- Group-regularized ridge: R-package GRridge, Github
- Multiple sources of co-data, as groups
- Elastic net-type variable selection
- Co-data Random Forest: CoRF. Under development.
- Handles nominal, ordinal and continuous co-data
- Computationally very efficient
- Alternatives: Group-lasso +: grpreg (Breheny, CRAN), Sparse version: SGL (Simon et al., CRAN).
- Based on group penalties
- One source of co-data represented as groups.

Discussion: CV versus EB

	Cross-Validation	Empirical Bayes
Tuned to Prediction	++	+
Easy to Implement	++	$-/+/++$
Multiple Penalties	-	++
Bayesian Models	-	+

Discussion: CV versus EB

	Cross-Validation	Empirical Bayes
Tuned to Prediction	++	+
Easy to Implement	++	$-/+/++$
Multiple Penalties	-	++
Bayesian Models	-	+

Hybrid methods:
a) CV for 'master-penalty' λ, EB for multipliers $\lambda_{g}^{\prime}, \lambda_{g}=\lambda \lambda_{g}^{\prime}$
b) CV-parameter tunes EB weights.

Discussion: CV versus EB

	Cross- Validation	Empirical Bayes	Hybrid Methods
Tuned to Prediction	++	+	++
Easy to Implement	++	$-/+++$	$-/+/++$
Multiple Penalties	-	++	++
Bayesian Models	-	+	$-/+$

Discussion: Full Bayes versus EB

	Full Bayes	Empirical Bayes
Error Propagation	++	$+/-$
Coverage, Intervals	+	+
Computational	-	+

Discussion: Full Bayes versus EB

	Full Bayes	Empirical Bayes
Error Propagation	++	+ +
Coverage, Intervals	+	+
Computational	-	+

Hybrid method: FB for 'master-parameter', EB for multipliers:
Logistic group-ridge: $\beta_{i} \sim N\left(0, \tau_{g}^{2}\right)$,

$$
\begin{aligned}
\tau_{g}^{-2} & =\tau^{-2} \tau_{g}^{\prime} \\
\tau^{-2} & \sim G\left(\alpha_{1}, \alpha_{2}\right)
\end{aligned}
$$

Discussion: Full Bayes versus EB

	Full Bayes	Empirical Bayes	Hybrid Methods
Error Propagation	++	$+/-$	+
Coverage, Intervals	+	+	++
Computational	-	+	+

Main message

Empirical Bayes (EB) allows one to learn

1. from a lot...(many variables)

Many flavors of EB in prediction, from hard to easy

Main message

Empirical Bayes (EB) allows one to learn

1. from a lot...(many variables)

Many flavors of EB in prediction, from hard to easy
2. ...and a lot more (prior information)

EB particularly useful for differential regularization

QUESTIONS?**†

**These slides are available via www.bigstatistics.nl ${ }^{\dagger \dagger}$ Review available on request

[^0]: *Details: Van de Wiel et al., Stat Med, 2016

[^1]: ${ }^{\dagger}$ see Le Cessie \& Van Houwelingen, Appl Statist, 1992

[^2]: †see Le Cessie \& Van Houwelingen, Appl Statist, 1992

[^3]: ${ }^{\ddagger}$ work in progress with Magnus Münch

[^4]: ${ }^{\ddagger}$ work in progress with Magnus Münch

[^5]: ${ }^{\text {§ }}$ Discussion on standardization: Van de Wiel et al., Stat Med, 2016 Tby Putri Novianti

