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Motivating example, Simulated

Suppose p = 50 covariates

1,...,25 associated with response Y; 26, ...,50 not

Sample size n =40

Ordinary ridge regression:

argmax L -\ Z 32

Equivalent to 3; ~ N(0,02),j=1,...,50



Coefficients
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Absolute value of Coefficients

Figure: Ridge regression coefficients, Group 1, Group2



Sums of squares, Coefficients

> mean(coefs[1:25]°2)
[1] 0.001723317

> mean(coefs[-(1:25)]1"°2)
[1] 0.0004957746



Sums of squares, Coefficients

> mean(coefs[1:25]°2)
[1] 0.001723317

> mean(coefs[-(1:25)]1"°2)
[1] 0.0004957746

Better priors (ad hoc): 5; ~ N(0,0%),j €
B; ~ N(0,03),j € group 2 with 02 = 303.

Equivalently, A = 3o

Refitting reduces CV-MSE by 10-20%; Rank correlation
prediction with response increases by 10-40%.



Prelude to variable selection

10 strongest covariates [Should be all from group 1]:

> toplO_ridge
(1] 1111211122
> toplO_groupridge
111111111111

To be continued...



Setting

¢ Prediction or Diagnosis

¢ Main study
» Variablesi=1,...,p;Individualsj=1,...,n;p>n
» Focus on binary response Y; (e.g. case vs control)
» Measurements X; = (Xy;,..., Xp))
» Goal: find f such that Y; ~ f(X;)
» f: logistic regression, random forest, spike-and-slab, etc.
» Some form of regularization required

e Focus
» Differential regularization based on prior information



Empirical Bayes (EB)

Regularization by informative prior (ridge: 3; ~ N(0, 02))

Empirical Bayes: estimate prior parameters from data

EB also applicable in frequentist settings. Example:
Logistic ridge, A = 1/(20?):

argmax L(Y: B) — Al|Bll2 = B, = B, = mode(r, (8]Y))

References

» Books: Carlin & Louis, 2000; Efron, 2010
» Review: Van Houwelingen, Biom J, 2014



Hard EB: Maximum marginal Likelihood

/8 = (517"'aﬁp)' Prior: WQ(B)! o= (ah"'a&G)

Marginal likelihood maximization:

& = argmax, ML(«a), with ML(«) = /ﬂL(Y; B)m(3)ds,



Hard EB: Maximum marginal Likelihood

/B = (517"'75[))' Prior: Wa(ﬁ)! o= (0417"'7046)

Marginal likelihood maximization:

& = argmax, ML(«a), with ML(«) = /ﬂﬁ(Y;ﬂ)wa(ﬁ)dﬁ,

Requires a likelihood. Optimization is hard, because
1. High-dimensional integral

2. Competitive prior parameters



Problem 1: High-dimensional integral

Solutions:

e Laplace approximation; may work well for sparse
settings (Shun & McCullagh, JRSSB, 1995)

e EM on Gibbs samples (Casella, Biostatistics, 2001).
Conceptually easy, computationally (often) terrible.

e EM on Variational Bayes approximation (Bernardo et al.,

Bayesian analysis, 2003). Fast, but requires dedicated
approximations.



Problem 2: competitive prior parameters

Elastic net:
argmaxL(Y; 8) — Ml|Bll1 — A2l|B]l2,
Equivalent Bayesian formulation, prior for 3;:
() oc mx () o exp[=Ail G — X262},

A1 and A\, are competitive, also for CV (Waldron et al.,
2011, Bioinf.)

Small simulation study, linear model:
p =200,n=100, (A1, \2) = (2,2)
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Problem 2: competitive prior parameters
Simulation, linear model: p = 200, n = 100, (A1, \2) = (2,2)

Bayesian elastic net: Li & Nin, Bayesian Analysis, 2010
Marginal likelihood from Gibbs: Chib, JASA, 1995

marginal \agrlike\ihood
| |

Marginal likelihood as a function of Ay and A,



Intermezzo: Prior info from co-data

Definition Co-data: any information on the variables that
does not use the response labels of the primary data

Examples of co-data
1. Published gene signature. Two groups of variables

2. Chromosome. Results in 24 groups

3. p-values from external study



Intermezzo: Prior info from co-data

Definition Co-data: any information on the variables that
does not use the response labels of the primary data

Examples of co-data
1. Published gene signature. Two groups of variables

2. Chromosome. Results in 24 groups
3. p-values from external study

Idea: Use different tuning parameters \q, ..., A\g across G
co-data-based groups. E.g. in ridge:

argmaxzL(Y; 3) — ZAQHQQHQ



EB, (somewhat) easier: Moment estimation®

Motivating example: estimate o2, o5 for (group) ridge:
B~ N(0,0%),j € , B ~ N(0,0%),j € group 2

Idea: equate empirical moment(s) to theoretical ones

*Details: Van de Wiel et al., Stat Med, 2016



EB, (somewhat) easier: Moment estimation®

Motivating example: estimate o2, o5 for (group) ridge:
B; ~ N(0,0%),j € , B ~ N(0,03),j € group 2

Idea: equate empirical moment(s) to theoretical ones

1 N 1 R
2 Frg 3 B[ERMIE] =00
1 A 1 .

Y B~ Es [EI2(Y)IB]] := go(o+, 02).
pzjegrgﬁ : pzjegrgpz ﬁ[ : ] : ?

where Eg denoted expectation w.r.t. the prior(s) of 3.

*Details: Van de Wiel et al., Stat Med, 2016



EB: Moment estimation

1 ne 1 A2 ._
LS gl 5 afetma)-oc

o E[F(Y)I8] = VI5(Y)] + E[5(V)IBF = v; + €.
e v;: known and constant in f;.

e & =Y, CikBk, Cik known'. Penalty causes bias!

fsee Le Cessie & Van Houwelingen, Appl Statist, 1992



EB: Moment estimation

1 ne 1 A2 ._
LS gl 5 afetma)-oc

E[B(Y)|8] = VIB(Y)] + E[B(Y)IB]? = v; + €.

v;: known and constant in ;.

e = >, CiBk, Cixk known'. Penalty causes bias!

For Eglef]: Epljfk] = 0, Eg[ /7] = o7 and Ep[3] = 03
= linear equation in (¢%, 03)

fsee Le Cessie & Van Houwelingen, Appl Statist, 1992



Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in
a group elastic net setting*

twork in progress with Magnus Miinch



Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in
a group elastic net setting*

Ad-hoc solution:

1. Estimate group penalties from ridge regression, possibly
for multiple groupings

2. Select k variables by introducing non-grouped L,
penalty

3. Refit the model using the selected variables and their
respective L, penalties

twork in progress with Magnus Miinch



Example: Diagnostics for cervical cancer

Current tests: Based on HPV (sometimes) i.c.w. cytology
— accurate, but requiring high standards of cytological
training

Additional problem: Some women do not show up for
screening

Molecular tests: Easy to implement, objective and
potentially cost-effective
+ can be applied to self samples.

Challenging: Because self samples are of lower quality



Cervical carcinogenesis

2-3 years

10-30 years

hrHPV

>

>

hrHPV persistence

Transient
infection

(Epi)genetic aberrations

Goal: Detect CING lesions, to be removed surgically



Example: Diagnostics for cervical cancer

/
— | Ko 7
/2= . T 1%
b0 ) p ) W,-()-
To laboratory hrHPV-positive I
Self-sampling hrHPV Molecular

at home testing testing



Example: Diagnostics for cervical cancer!

Goal: Select markers for classifying Normal vs CIN3
— final goal is a cheap PCR assay

Data:

e miRNA sequencing data

e n=56:32 Normal, 24 CIN3

e p = 772 (after filtering lowly abundant ones).
Sqgrt-transformed to quasi-Gaussian scale
Standardized for penalty to have the same effect®.

§Discussion on standardization: Van de Wiel et al., Stat Med, 2016
Tby Putri Novianti



Example: Diagnostics for cervical cancer

Co-data
e Conservation status:

1. Non-conserved (552)
2. Conserved across mammals (72)
3. Broadly conserved, across most vertebrates (148)

e Standard deviation per variable
» 10 groups of variable with decreasing s.d.
» Allows natural variability to impact the classifier via
penalty weights



Co-data results

Ag x 04%; Penalty multipliers Xy: Ay = A\, g=1,...,G
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Co-data results

Ag x 04%; Penalty multipliers Xy: Ay = A\, g=1,...,G

Conservation status:
1. Non-conserved (552): \; = 1.84
2. Conserved across mammals (72): X} = 0.61
3. Broadly conserved across vertebrates (148): A\; = 0.30

Standard deviation Range from )\, = 0.56 (large s.d.) to
Ny = 1.80 (small s.d.)

—> Indeed, partly ‘undoes’ the effect of standardization.



Variable selection: Data example
AUC assessed by LOOCV

087]

N
selEN

0

345678 910111213141516 171819202122232425
The number of !ealures

GRridge + EN selection,Lasso,Elastic Net



EB, easy: Random Forest

Random Forest Classifier

treet, O split node tree fg
O leaf node

e ‘Regularization’ by Uniform sampling of myy, = /p
candidate variables per node split



EB, easy: Random Forest

Random Forest Classifier

tree t; O split node tree tg
O leaf node

e ‘Regularization’ by Uniform sampling of myy, = /p
candidate variables per node split

¢ ldea: Replace uniform ‘prior’ by one informed by co-data

¢ No likelihood: informal Empirical Bayes



Co-RF: Algorithm

1. Fit ordinary Random Forest (RF)
2. Calculate for each variable i how often selected: v;

3. Determine S potentially relevant co-data sources,
Cs,i=1,...,p,s=1,...,8



Co-RF: Algorithm

1. Fit ordinary Random Forest (RF)
2. Calculate for each variable i how often selected: v;

3. Determine S potentially relevant co-data sources,
Cs,i=1,...,p,s=1,...,8

4. Robustly regress v; on co-data info C;
5. Regression renders fitted selection frequency: f;
6. Truncate f;: f = (f; — vyE[f*"]),

7. Run new RF, with prior pf*" o f/ per node split

1



Co-RF: the regression

Variables are the ‘samples’. Only interested in mean
approximation:

Vi = ga(Ci)

Regression: parsimonious to avoid overfitting!

Nominal co-data: cluster small groups of variables

Continuous co-data:

» Parameterize (e.g. alog(p;), pi: external p-value)
» Or (monotone), penalized spline



Example!: Oral cancer

Setting
e TCGA data, oral cancer, n=262,p = 16.012

e Response: Lymph node metastasis (Yes/No)
e Main data: normalized mRNA expression, RNAseq

e Co-data: Kendall correlation with matched DNA copy
number data (gene-gene)

by Dennis te Beest



Why DNA as co-data?

1. DNA copy number in tumor affects mRNA expression

2. DNA is more stable than mRNA

3. Co-data: DNA not required for future samples (as it
would be for integrated classifiers)



Regression on co-data: monotone spline

« Set to zero after truncation 2

9e-05

+ Selected after truncation i

- Expected under Uniform (1/P)

7e-05 8e-05

Fitted relative selection frequency, co—data model
6e-05

T T T T T
-0.2 0.0 0.2 0.4 0.6
Correlation between mRNA expression & DNA copy number



Classification results

Accuracy assessed by 10-fold CV

Number of misclassifications drops from 112 (43%) to
88 (34%)

PPV increases from 59% to 66%

NPV increases from 53% to 67%



Software, handling co-data

e Group-regularized ridge: R-package GRridge, Github
» Multiple sources of co-data, as groups
» Elastic net-type variable selection

e Co-data Random Forest: CoRF. Under development.

» Handles nominal, ordinal and continuous co-data
» Computationally very efficient

e Alternatives: Group-lasso +: grpreg (Breheny, CRAN),
Sparse version: SGL (Simon et al., CRAN).
» Based on group penalties
» One source of co-data represented as groups.



Discussion: CV versus EB

_ Cross-Validation Empirical Bayes

Tuned to Prediction ++ +
Easy to Implement ++ -[+[++
Multiple Penalties - ++

Bayesian Models - +



Discussion: CV versus EB

Tuned to Prediction ++ +
Easy to Implement ++ [+ ++
Multiple Penalties - ++
Bayesian Models - +

Hybrid methods:
a) GV for ‘master-penalty’ A, EB for multipliers Ay, Ay = A\
b) CV-parameter tunes EB weights.



Discussion: CV versus EB

Cross- Empirical Hybrid
Validation Bayes Methods

Tuned to Prediction
Easy to Implement ++ -[+[++ -/+/++
Multiple Penalties = ++ ++

Bayesian Models - + E



Discussion: Full Bayes versus EB

_ Full Bayes Empirical Bayes

Error Propagation ++ +/-
Coverage, Intervals + +

Computational - +



Discussion: Full Bayes versus EB

Error Propagation ++ +/-
Coverage, Intervals + +
Computational - +

Hybrid method: FB for ‘master-parameter’, EB for multipliers:

Logistic group-ridge: 5; ~ N(0,72),



Discussion: Full Bayes versus EB

Full Bayes | Empirical Hybrid
Bayes Methods

Error Propagation
Coverage, Intervals + + ++

Computational - 4 +



Main message

Empirical Bayes (EB) allows one to learn

1. from a lot...(many variables)
Many flavors of EB in prediction, from hard to easy



Main message

Empirical Bayes (EB) allows one to learn
1. from a lot...(many variables)
Many flavors of EB in prediction, from hard to easy

2. ...and a lot more (prior information)
EB particularly useful for differential regularization



QUESTIONS ?*+11

**These slides are available via www.bigstatistics.nl
"TReview available on request
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